Wild conductor exponents of curves

Harry Spencer

University College, London

8 July 2025

Wild conductor exponents

We can provably (and practically) compute $n_{C,p,\text{wild}}$ in the following cases:

- C an elliptic curve.
- C hyperelliptic, p > 2 or low genus.
- ullet C superelliptic, p prime to exponent.
- C non-hyperelliptic of genus 3,4 or 5, p > 2.
- C plane quartic with a rational point.

Theorem (M²D²)

Let $C/\mathbb{Q}: y^2 = f(x)$ be a hyperelliptic curve, p > 2:

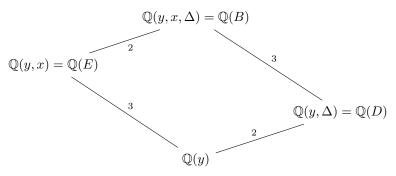
$$n_{C,p,\mathrm{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} v_p(\Delta(\mathbb{Q}_p(r)/\mathbb{Q}_p)) - [\mathbb{Q}_p(r):\mathbb{Q}_p] + f_{\mathbb{Q}_p(r)/\mathbb{Q}_p},$$

where R is the set of roots of f over $\bar{\mathbb{Q}}_p$.

Idea: generalise this formula to degree d covers of \mathbb{P}^1 , p>d.

Toy example

Consider an elliptic curve $E/\mathbb{Q}: y^2=x^3+ax+b$ with $a\neq 0$. We consider the degree 3 cover to \mathbb{P}^1 and fill in the Galois diagram:



where $\Delta^2 = \mathrm{disc}_x(x^3 + ax + (b-y^2))$. It turns out $E[3] \cong \mathrm{Jac}(D)[3]$ and E and D have the same wild conductor exponents at $p \neq 3$.

Replacing $E \to \mathbb{P}^1$ by a degree 3 simply branched cover $C \to \mathbb{P}^1$, $\operatorname{Jac}(D)[3] \cong \operatorname{Jac}(C)[3] \oplus \operatorname{stuff}$ as wild inertia reps for $p \neq 3$.

Main theorem

Theorem

Let $C \to \mathbb{P}^1$ be a degree d simply branched cover. For p > d,

$$n_{C,p,\mathrm{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} v_p(\Delta(\mathbb{Q}_p(r)/\mathbb{Q}_p)) - [\mathbb{Q}_p(r):\mathbb{Q}_p] + f_{\mathbb{Q}_p(r)/\mathbb{Q}_p},$$

where R is the set of $\bar{\mathbb{Q}}_p$ -branch points.

Idea of proof

Unramified cyclic covers + Galois theory + representation theory

Perturbations

For $g \in \mathbb{Q}_p[t]$, write

$$w_p(g) = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta(\mathbb{Q}_p(r)/\mathbb{Q}_p)) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_p(r)/\mathbb{Q}_p}),$$

where R is the set of $\bar{\mathbb{Q}}_p$ -roots of g and r is a root with multiplicity m(r).

Lemma

For p^{th} -power free g, the quantity $w_p(g)$ is locally constant.

Likewise, wild conductor exponents are locally constant. If we can perturb a degree d cover $\pi:C\to\mathbb{P}^1$ to obtain $\tilde{C}\to\mathbb{P}^1$ simply branched, then we can read off wild conductor exponents from the branch locus of π .

Example

Suppose C: f(x,y)=0 is a smooth affine model for a curve and $\deg_x f=d$. Then, for p>d, we have $n_{C,p,\mathsf{wild}}=w_p(\mathsf{disc}_x f)$.

Harry Spencer (UCL) Wild conductor exponents 8/7/25

<ロト <部ト < 注 > < 注 >

5/5