
Stark’s Conjectures and the eTNC Formalism

Harry Spencer*

21 April 2023

Abstract

We introduce Stark’s Main Conjecture on the leading coefficient of Artin L-functions
at s = 0, and some of its natural refinements in the abelian case, before discussing how all
of these refinements may be unified as a special case of the equivariant Tamagawa Number
Conjecture (eTNC). We finish by showing how the eTNC can be used to generate further
refinements.
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0 Introduction

We begin with a quick recall of the analytic class number formula (ACNF).

Definition 0.1. Given a number field k and a finite set of primes S of k including the infinite
primes, we define the S-truncated zeta function

ζk,S(s) =
∏
p̸∈S

(1−N(p)−s)−1.

In the case where S = S∞ is the set of infinite primes, we have the celebrated analytic
class number formula. This is typically stated as a recipe for the residue of the Dedekind zeta
function ζk = ζk,S∞ at s = 1, but using the functional equation this is equivalent to the following
[Tat84, Corollary 1.2].

Theorem 0.2 (Dedekind). Let k be a number field with r real embeddings and 2s complex
embeddings. Denote the regulator of K by R = R(k), the class number of k by h = h(k), and
the number of roots of unity in k by w = w(k). Then ζk has a zero of order r+s−1 = |S∞|−1
at s = 0, and the leading coefficient of the Taylor expansion is

−hR

w
.

Given k and S we define hS to be the class number of the ring

OS =
⋂
p̸∈S

OK,p,

where OK,p is the completion of OK at p. Denote by RS the ‘S-regulator’ of K, given by the
formula, where {ui} is a generating set for the torsion-free part of O×

S and p0 is any choice of
prime in S:

RS = | det(log |ui|p)p∈S−p0 |. (0.1)

Then the above theorem easily generalises to ζk,S in the following way.

Corollary 0.3. Let k be a number field, and S∞ ⊆ S a set of primes. Then ζk,S has a zero of
order |S| − 1 at s = 0 and the leading coefficient of the Taylor expansion is

−hSRS

w
.

Stark’s conjectures are an attempt to weakly generalise the ACNF. In particular, we take
K/k a Galois extension of number fields, with G = Gal(K/k), and S a finite set of primes of k
including the infinite primes. We consider a complex representation V of G affording character
χ. Then Stark’s main conjecture [Tat84, Conjecture 5.1] predicts a recipe for a ‘Stark regulator’
such that the coefficient of the S-truncated Artin L-function of V at s = 0 (equivalently, s = 1)
is a product of this regulator and an algebraic number.

Following Stark’s work, there was for a time in the 1970s and ‘80s something of an industry
dedicated to producing refinements of Stark’s conjecture. We will discuss some of these refine-
ments in this document, before turning our attention to the equivariant Tamagawa Number
Conjecture (eTNC) of Bloch–Kato and Burns–Flach. This is hoped to be, in some sense, a
universal refinement of Stark’s conjecture.

In section 1 we explain Stark’s main conjecture, and give some natural refinements in the
case that K/k is an abelian extension, mostly following [Tat84]. In section 2 we give a special
case of the eTNC and explain how this implies Stark’s conjecture. In section 3 we show how
the eTNC can be used to formulate refinements of known conjectures, following [Bur11a]. We
also note that major progress has been made in recent years on some of the conjectural results
discussed here (e.g. [DK23], [BBDS21]), and that this progress is, or may then be viewed as,
evidence for the validity of the eTNC in general.
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1 Stark’s conjectures and refinements

Let K/k be a Galois extension of number fields, S a finite set of primes of k containing the
infinite primes, and S ′ = S(K) the set of primes of K lying above those in S. We consider
a complex representation V of G affording character χ, and consider the corresponding S-
truncated Artin L-function

LS(χ, s) =
∏
p̸∈S

det(1− FrobpNk/Q(p)
−s|V Ip)−1,

where Ip is the inertia subgroup at p and Frobp denotes the arithmetic Frobenius. From the
functional equation of L(χ, s) we find the following:

Proposition 1.1. LS(χ, s) has a zero of order rS(χ) = − dim(V G)+
∑

p∈S dim(V Gp) at s = 0.
Moreover,

rS(χ) =

{
|S| − 1 if χ = 1

|{p ∈ S|χ(Gp)}|, else.

Notation. We denote denote the leading coefficient of the Taylor expansion at s = 0 by L(χ).

Then Stark’s main conjecture, roughly-speaking, gives a recipe for a regulator R(χ), which
generalises that introduced in the analytic class number formula. In particular, such that
L(χ)/R(χ) should be algebraic.

1.1 Stark’s main conjecture

Fixing the notation of above, we now give the recipe for the Stark regulators we described.
Although denoted above by R(χ), Stark regulators will also have an additional dependence on
a choice of function f which we now describe.

Let XS be the quotient of the free abelian group on S ′ given by

XS =

{∑
P∈S′

nPP |
∑
P∈S′

nP = 0

}
.

We also consider the set of S ′-units US = {u ∈ K | ||u||P = 1 for all P ̸∈ S ′}. We write
Xk,S and Uk,S for the analogous quotient of the free abelian group on S and the set of S-units
respectively. Define a C-linear map λS : CUS → CXS

1

λS : 1⊗ u 7→
∑
P∈S′

log ||u||PP.

Theorem 1.2 (Dirichlet’s S-unit theorem). λS is an isomorphism.

In fact, both CUS and CXS inherit actions of G from US and XS and it is clear that λS is
then an isomorphism of C[G]-modules.

Definition 1.3 (Stark regulators). Given any C[G]-homomorphism f : CXS → CUS, define
the Stark regulator to be

R(χ, f) = det(λS ◦ f | V ),

where this denotes the determinant of the induced automorphism

HomG(V
∗,CXS) → HomG(V

∗,CXS)

given by postcomposition with λS ◦ f .
1We adopt the convention that for F a field and M a Z-module (later, Z′-module), the tensor product

F ⊗Z M is abbreviated to FM .
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We borrow the following example of [Das99].

Example 1.4. Let us consider the link between this definition and the S-regulator defined
in the introduction, RS = | det(log |ui|p)p∈S−p0|. We have G trivial, and so det(λS ◦ f | V ) =
det(λS ◦ f). Moreover, we need only consider the trivial character. Write R(f) for the Stark
regulator in this case. Now take f to be injective. We have, for some fixed p0

XS =
⊕
p̸=p0

Z(p− p0).

Then with respect to the basis {p−p0}, the matrix for λS ◦ f is (log |f(pi−p0)|pj)i,j ̸=0 for some
enumeration of S. Hence we find R(f) = det(λS ◦ f) = ±RS[US : f(XS)µ(k)] = ±RS[US :
f(X)]/w, and the link to the analytic class number formula is clear with this set-up. ♢

It is an observation of Herbrand that we may take f to be an isomorphism defined on the
level of Q[G]-modules. Taking this to be the case, we are able to state Stark’s main conjecture.

Conjecture 1.5 (Stark’s Main Conjecture). Set A(χ, f) = R(χ, f)/L(χ). Then A(χ, f) ∈
Q(χ), and for all σ ∈ Gal(Q(χ)/Q)

A(χ, f)σ = A(χσ, f).

Before we specialise to the abelian setting, we note some important properties of the quantity
A(χ, f). Firstly, fixing f , A(χ, f) inherits the following ‘Artin formalism’ from L(χ, s):

Lemma 1.6. (i) For all characters χ, χ′ of G

A(χ+ χ′, f) = A(χ, f)A(χ′, f)

(ii) For H ≤ G,
A(IndG

Hχ, f) = A(χ, f).

In fact this lemma is enough to deduce conjecture 1.5 for permutation representations. We
also state some other cases where the conjecture is known to hold.

Theorem 1.7. (i) Conjecture 1.5 holds for permutation representations.
(ii) Conjecture 1.5 holds for all rational characters.
(iii) Conjecture 1.5 holds when r(χ) = 0.

Sketch of proof. We sketch a proof of (i), and give some short discussion on the validity of (ii),
(iii).

For (i), one can invoke the class number formula in the form of corollary 0.3 to show that
the conjecture holds for the trivial character χ = 1G, then the conjecture holds for all characters
which are sums of characters of the form IndG

H1H .
We omit the proof of (ii), although we do note that (i) implies the weaker result that given

a rational character χ, there exists a positive integer n such that conjecture 1.5 holds for nχ.
This is because there exists permutation characters such that nχ is their difference.

Lastly, (iii) follows from the non-trivial fact that L(χσ, 0) = L(χ, 0)σ for all σ ∈ Aut(C),
noting that R(χ, f) = 1.

We note (iii) of the above as motivation for our consideration of the case r(χ) = 1 in the
following. For a full explanation of the results briefly described above, see [Tat84].
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1.2 The rank one abelian case

We now maintain the same notation as above, but take K/k to be an abelian extension and
consider r(χ) = 1, so L′

S(χ, 0) is the leading term. We define, for non-empty T ⊂ S containing
places ramifiying in K/k,

US,T =

{
{u ∈ US | ||u||P = 1 for all P lying above T}, |T | ≥ 2

{u ∈ US | ||u||P is constant for P|p}, T = {p}
.

In this case we can then formulate a version of Stark’s conjecture which predicts the existence
of a Stark unit, with which we can give an explicit expression for the leading coefficient of
LS(χ, s) at s = 0:

Conjecture 1.8. Suppose |S| ≥ 2, and that p ∈ S splits in K with P|p. Taking T = S − {p},
there exists ε ∈ US,T such that

L′
S(χ, 0) = − 1

W

∑
σ∈G

χ(σ) log ||εσ||P,

and K(ε1/W )/k is an abelian extension.

Remark 1.9. We will see in the following subsection that this is stronger than Stark’s main
conjecture in this setting. ♢

Notation. Following Tate, we denote the statement that such an ε exists for a specific extension
K/k and set of primes S by St(K/k, S). Note that we have omitted the choice of p,P from
this notation because ε(Pσ) = ε(P)σ and because of the following.

Proposition 1.10. St(K/k, S) is true if S contains two places which split completely in K.

This leads to the following simple corollaries.

Corollary 1.11. (i) St(K/k, S) holds if K = k.
(ii) St(K/k, S) holds if k has more than one complex place.

Proof. Trivially, every prime splits totally in K/k. All complex places split totally.

1.3 The Brumer–Stark conjecture

We maintain the same setting as in the previous. In fact, we begin by introducing some
definitions so that we can reformulate conjecture 1.8 in a way that will turn out to be more
helpful.

Definition 1.12. For σ ∈ G, the partial zeta function ζk,S(σ, s) = ζS(σ, s) is given by

ζS(σ, k) =
∑

a◁Ok,(a,S)=1,σa=σ

Nk/Q(a)
−s,

where σa is the image of a under the Artin reciprocity map.

This leads us to define
θS(s) =

∑
σ∈G

ζS(σ, s)σ
−1,

and to formulate
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Conjecture 1.13. Suppose |S| ≥ 2, and that p ∈ S splits in K with P|p. Taking T = S−{p},
there exists u ∈ QUS such that

λS(u) =

{
−θ′S(0)P, |T | ≥ 2

−θ′S(0)(P− 1
|G|q), T = {q}

.

Moreover, there exists ε ∈ K× such that the equality Wu = 1⊗ε holds in QK× and K(ε1/W )/k
is abelian.

Notation. Let us denote this statement for a specific choice of K/k and S by St′(K/k, S),
again suppressing the choice of p and P.

Proposition 1.14. St′(K/k, S) and St(K/k, S) are equivalent.

Proof. We treat the case |T | ≥ 2. The other case may be dealt with similarly.
Assume that St(K/k, S) holds. Then take u = 1/W ⊗ ε. Certainly the latter part of

St′(K/k, S) is valid. For the first part, we note that

LS(χ, s) =
∑
σ∈G

ζS(σ, s)χ(σ)

and so the equality of St(K/k, S) becomes∑
σ∈G

ζ ′S(σ, 0)χ(σ) = − 1

W

∑
σ∈G

χ(σ) log ||εσ||P,

and we conclude log ||εσ||P = −Wζ ′S(σ, 0) and that

λS(u) =
1

W
⊗

∑
Q∈S′

log ||ε||QQ =
1

W
⊗
∑
Q|p

log ||ε||QQ =
1

W
⊗

∑
σ∈G

log ||εσ||P × σ(P),

because ε ∈ US,T . Combining these facts yields λS(u) = −θ′S(0)P, and the converse works in
exactly the same way.

Notation. From now on we denote both St′(K/k, S) and St(K/K, s) by simply St(K/k, S).

Remark 1.15. Conjecture 1.13 is stronger than Stark’s main conjecture in this setting, in the
sense that Stark’s conjecture holding for all χ with r(χ) = 1 is equivalent to conjecture 1.13
without the existence of ε. ♢

Now to formulate Brumer–Stark, we adopt a subtle change in perspective. We fix, instead
of S, a non-empty set T of primes of k containing the infinite primes, and write

KT =

{
{u ∈ K | ||u||Q = 1 for all Q lying above T}, |T | ≥ 2

{u ∈ K | ||u||Q is constant for Q|q}, T = {q}
.

We choose a prime p ̸∈ T which is totally split in K with P|p and set S = T ∪ {p}. It is a
highly non-trivial fact that θT (0) ∈ Q[G] (indeed Deligne and Ribet showed that uθT (0) ∈ Z[G]
for each u ∈ AnnZ[G](µ(K))). Then we define the subgroup ITK of the ideal group IK by

ITK = {I ∈ IK | IθT (0) = (u) such that ∃ ε with Wu = ε in QK× and K(ε1/W )/K is abelian}.

Then we have

Conjecture 1.16 (Brumer–Stark). ITK = IK.
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Notation. Following Tate, we denote the statement that ITK = IK for a specific extension K/k
and set of primes T by BS(K/k, T ).

The link to Stark’s conjecture comes from the observation that the condition on u in con-
jecture 1.13 is equivalent to u ∈ QKT and (u) = θT (0) ·P, where (u) is the image in QIK under
the natural extension of the map K× → IK given by x 7→ (x). This leads us to the following
proposition.

Proposition 1.17. Let P be a set of primes of k such that each p ∈ P totally split in K and
such that the primes of K lying above those in P generate the ideal class group ClK. Then

BS(K/k, T ) ⇐⇒ St(K/k, T ∪ p) for all p ∈ P.

In particular, we may take P to be the set of all totally split primes.

Remark 1.18. We finish this subsection by noting that recent major progress has been made
on the Brumer–Stark conjecture in [DK23]. In particular, if we rephrase conjecture 1.16 as
the statement that θT (0) belongs to an appropriate annihilator A in the class group ClK (c.f.
conjecture 3.1), then they prove this conjecture ‘away from 2’, meaning that θT (0) lies in
A⊗Z Z[1/2]. ♢

1.4 Gross’ refined class number formula

Lastly we discuss a conjecture of Gross; the ‘refined class number formula’, formulated in
[Gro88]. As Stark’s conjecture was an attempt to ‘weakly generalise’ the analytic class number
formula, this conjecture is an attempt to obtain a more precise constraint on the relevant
leading term. It gives a conjectural congruence satisfied by θS(0) modulo some power of the
augmentation ideal ker(Z[G] → Z). For the sake of narrative ease, we state a slightly weakened
special case of Gross’ conjecture which essentially amounts to the case T = ∅ of the full ‘(S, T )-
version’ formulated in [loc. cit.]. In particular, recall from the preceding that wθS(0) ∈ Z[G]. To
avoid certain techincalities, we set Z′ = Z[1/w] so that this statement becomes θS(0) ∈ Z′[G].
This will allow us to state a weakened version of Gross’ conjecture that gives a congruence
modulo the augmentation ideal I = ker(Z′[G] → Z′). We begin with the following preliminary
fact:

Fact 1.19. Suppose θS(0) vanishes to order r. We have θS(0) ∈ Ir.

Gross’ refined class number formula will then be a conjectural congruence satisfied by θS(0),
which we state as an equality in the graded piece Ir/Ir+1. To state this congruence, we will
have to give a suitable notion of regulator in Ir/Ir+1. To do so, we first choose enumerations
{p0, . . . , pr} and {u1, . . . , ur} of S and of U ′

k,S respectively. For each pi, choose a place Pi|pi of
K and let reci be the reciprocity map of local class field theory for the extension KPi

/kpi . For
each i, we define a homomorphism

ρi : k
× ↪→ k×

pi

reci−−→ G → G′ = G⊗Z Z′.

For later relevance, we view this as a pairing

ρ : U ′
k,S ×X ′

k,S → G′,

and define the regulator R̃S ∈ Ir/Ir+1 to be the image under the quotient map of

det(ρ(uj, pi)− 1)1≤i,j≤r ∈ Ir/Ir+1,

via the identification G′ ∼−→ I/I2 given by g 7→ g − 1.
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Remark 1.20. Recall that when defining Dirichlet’s regulator (0.1), we took it to be positive.

We lose this sign ambiguity here because S∞ ⊂ S implies that 2R̃S = 0 (see the remarks
following [Dar91, Conjecture 1.2.4]). ♢

Finally we are able to state Gross’ refined class number formula:

Conjecture 1.21 (Gross). Let θ̃S(0) be the image of θS(0) in Ir/Ir+1. We have

θ̃S(0) = −hSR̃S.

From this formulation it is clear that this is an attempt to generalise Dirichlet’s analytic
class number formula; indeed the minus sign is not a necessary inclusion and, moreover, if θS(0)
does not vanish to order r + 1, then we should have hS odd by the remark. In this case the
conjecture reads

θ̃S(0) = R̃S,

cf. theorem 3.9 and corollary 3.10. We formulate it as above both to better resemble the ACNF,
and because it better resembles the analogous formulation in the case of function fields. Due
to the remark above we cannot recover the sign in the ACNF, but this is no great impediment.
Less trivially, because we have weakened Gross’ conjecture by applying everywhere the functor
−⊗Z Z′, we cannot recover the ACNF in full.
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2 A special case of the eTNC

2.1 Technical background

We begin with a brief discussion on determinant modules. We give the simple definition in the
case of a free R-module of rank r

[M ]R =
r∧
M ∼= R,

where this (very non-canonical) isomorphism is given by ∧imi 7→ 1, for any choice of R-basis
{mi} of M . We extend this definition to the case that R is a finite dimensional semisimple
commutative algebra and M is any finitely generated R-module in the following way. Write
R =

∏
i Fi as a (finite) product of fields so that M decomposes as M =

⊕
iMi for each Mi a

free Fi-module. We write
[M ]R =

⊕
i

[Mi]Fi
.

It is clear that these definitions agree in the case that M is a free R-module. We also define

[M ]−1
R = HomR([M ]R, R).

These constructions have the following properties:

1. [0]R = R.

2. For a short exact sequence E : 0 → M → N → P → 0 of finitely generated free R-modules
we obtain a canonical isomorphism

ι(E) : [N ]R → [M ]R ⊗R [P ]R

given by (∧imi) ∧ (∧j p̂j) 7→ (∧imi) ⊗ (∧jpj) for any choice of bases {mi}, {pj} of M,P
respectively and with p̂j a choice of preimage of pj in N .

3. We have caconical isomorphisms, both of which we will denote by evM ,

[M ]R ⊗R [M ]−1
R → R, [M ]−1

R ⊗R [M ]R → R

by m⊗ f 7→ f(m), f ⊗m 7→ f(m) respectively.

4. Given an isomorphism f : M → N of finitely generated free R-modules, we obtain
canonical isomorphisms both denoted by t(f)

[M ]R ⊗R [N ]−1
R

[f ]R⊗1−−−−→ [N ]R ⊗R [N ]−1
R

evN−−→ R,

[M ]−1
R ⊗R [N ]R

[f ]−1
R ⊗1

−−−−→ [N ]−1
R ⊗R [N ]R

evN−−→ R,

where [f ]R is the map induced by f and [f ]−1
R is the map [M ]−1

R → [N ]−1
R given by

precomposition with [f−1]R.

Notation. From now on, we abbreviate [M ]R ⊗R [NR] to simply [M ]R[N ]R.

Remark 2.1. We are ignoring some non-trivial techincalities in this set-up. For an explanation
see [Bur11a, Remark 1.1]. ♢
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The modules we will be interested in throughout the remainder of this work will be over the
group algebra Z[G] (and its extensions of scalars), for some finite abelian group G − indeed
this will later be taken to be Gal(K/k) for a finite abelian extension of number fields. In this
setting, the above extends to G-modules of finite projective dimension and we obtain analogues
of all of the properties discussed above, although it will no longer be true that [M ]Z[G] is a rank
one free Z[G]-module. For details, see [Bur11a].

To demonstrate that these modules are worthy of their name, and to see how they might
be related to conjecture 1.5, we relate this construction to the determinants of R-module
homomorphisms in the following way.

Lemma 2.2. Let f : M → N be an isomorphism of (for simplicity) finitely generated free
R-modules of rank r, and fix R-bases {mi}, {ni} of M , N respectively. Set m = ∧imi and n∗

to be the map ∧ini 7→ 1. If βM and βN be the maps m 7→ 1 and n∗ 7→ 1 respectively, and Φ is
the matrix of f with respect to the bases {mi}, {ni}, then the following diagram commutes.

[M ]R[N ]−1
R R

R⊗R R

t(f)

βM⊗βN

id

× det(Φ)

Proof. After unravelling the definitions we are required to show evN ◦ ([f ]R ⊗ 1) : rm⊗ sn∗ 7→
rs det(Φ), hence it suffices to show that m⊗ n∗ 7→ det(Φ). We have

m⊗ n∗ 7→ ∧iϕ(mi)⊗ n∗ 7→ n∗(∧iϕ(mi)) = n∗(
∧
i

∑
j

Φijnj) = det(Φ),

because the wedge product is antisymmetric.

2.2 Statement of the conjecture

Let us recall the set-up for the abelian case of Stark’s conjecture. We have K/k a finite abelian
extension of number fields, and S a finite set of primes in k containing the infinite primes.
Write G = Gal(K/k).

Proposition 2.3. Suppose that the class group Cl(OS) is trivial. Then there exists an exact
sequence of Z[G]-modules

τS : 0 → US → E0
d−→ E1 → XS → 0

such that E0, E1 are finitely generated of finite projective dimension.

Remark 2.4. Building on Tate’s work (see, for example, [Tat84, Theorem 5.1]), Chinburg con-
structed this 2-extension using the semi-local and global canonical classes of class field the-
ory. ♢

The following allows us to lose the requirement that the class group is trivial.

Theorem 2.5. Suppose that S contains all the primes which ramify in K/k. Then there

exists unique (up to unique isomorphism), finitely generated X̃S such that there exists an exact
sequence of Z[G]-modules

0 → Cl(OS) → X̃S → XS → 0

and that there exists a canonical (class of) 2-extension(s)

τS : 0 → US → E0
d−→ E1 → X̃S → 0

with E0, E1 finitely generated of finite projective dimension which agrees with that of proposition
2.3 when Cl(Os) is trivial.
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We are almost able to define the determinant lattice ΞS. To do so, we note that τS gives
rise to

E1 : 0 → QUS → QE0 → Qd(E0) → 0

E2 : 0 → Qd(E0) → QE1 → QX̃S → 0

from which we obtain a Q[G]-module isomorphism

ι : [QE0]Q[G][QE1]
−1
Q[G]

evQd(E0)
◦(ι(E1)⊗ι(E2))−−−−−−−−−−−−−→ [QUS]Q[G][QX̃S]

−1
Q[G].

Lastly we take the R[G]-module isomorphism ξS to be

ξS : [RE0]R[G][RE1]
−1
R[G]

R⊗ι−−→ [RUS]R[G][RX̃S]
−1
R[G]

t(λS)−−−→ R[G].

Definition 2.6 (Determinant lattice).

ΞS = ξS([E0]Z[G][E1]
−1
Z[G]).

This construction, as one would hope, is independent of the choice of τS up to equivalence
in Ext2Z[G](XS, US):

Proposition 2.7. ΞS does not depend on the specific choice of E0, E1; only on the class given
by theorem 2.5.

Proof. See [Bur11a, Proposition 1.11] and [loc. cit., Remark 1.12].

Finally, the relevant special case of the eTNC is as follows.

Conjecture 2.8 (eTNC).
Z[G] · θ∗S(0) = ΞS.

Remark 2.9. The difficulty in verifying this case of the eTNC in general largely boils down to
computing the canonical class τS. Despite this difficulty, in [BBDS21], Bullach, Burns, Daoud
and Seo use the results of [DK23] to show that what is known as the ‘minus part’ of this case
of the eTNC holds. Moreover, conjecture 2.8 is known fully in the following cases:

1. k = Q (Burns, Greither, Flach);

2. K/k is quadratic (Kim).

There are also strong results in this direction due to Bley in the case that K/F is an abelian
extension of an imaginary quadratic field, and k is any intermediate field. See [Bur11a, Remark
2.9] for details. ♢

2.3 Analytic class number formula and Stark’s conjecture

We began this document by claiming that Stark’s conjecture arose as an attempt to generalise
the analytic class number formula, so if we are to claim that this special case is (in some sense)
a universal refinement of the abelian case of Stark’s conjecture, then we’d better verify the
following.
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Proposition 2.10. Conjecture 2.8 implies the analytic class number formula up to sign.

Proof. Take K = k, so G is trivial and so is Ext2Z[G](X̃S, US). Then there is only one class of

2-extensions and we have US
∼= Z|S|−1 × µ(k), and X̃S

∼= XS × Cl(OS) ∼= Z|S|−1 × Cl(OS), so
we may take

τS : 0 → US → E0
0−→ E1 → X̃S → 0,

where E0 = Z|S|−1 × µ(k) and E1 = Z|S|−1 × Cl(OS). Then we must compute the image under
ξS of [E0]Z[E1]

−1
Z . We note that

[E0]Z = [µ(k)]Z[Z|S|−1]Z =
1

w
[Z|S|−1]Z and [E1]Z = [Cl(OS)]Z[Z|S|−1]Z =

1

hS

[Z|S|−1]Z.

Hence we have

ξS :
hS

w
[Z|S|−1]Z[Z|S|−1]−1

Z
R⊗ι(E1)ι(E2)−−−−−−−→ [RUS]R[RX̃S]

−1
R

t(λS)−−−→ R[G],

and so, recalling lemma 2.2, conjecture 2.8 says

Z · θ∗S(0) = ΞS =
hS det(λS)

w
· Z,

and so the leading term of θS(s) = ζS(s) at s = 0 is ±hS det(λS)/w.

Remark 2.11. It is clear that this is the best we can hope for, because the eTNC is sensitive to
changes in sign, whilst the regulator appearing in the analytic class number formula is taken
to be an absolute value, c.f. remark 1.20. ♢

To see that the eTNC implies Stark’s main conjecture in the abelian setting, we fix a Q[G]-
module isomorphism f : QUS → QXS and consider the quantity

R(f) = detR[G](λS ◦ f−1) ∈ R[G]×.

Notation. We have a decompostion of R[G] as a finite product of fields, because R[G] is finite-
dimensional and semisimple. Here, detR[G] denotes the product of the determinants calculated
over each factor in this decompostion.

Proposition 2.12. Stark’s main conjecture in the abelian setting is equivalent to the statement

θ∗S(0)R(f)−1 ∈ Q[G]. (2.1)

Proof. For characters χ ∈ Ĝ, write χ̃ for the C-linear homomorphism C[G] → C given by
g 7→ χ(g) for g ∈ G. We obtain an isomorphism of C-algebras

C[G] →
∏
χ∈Ĝ

C,

given by x 7→ (χ̃(x))χ∈Ĝ: it is clear that this is a C-algebra homomorphism. For bijectivity,
note that there are |G| distinct characters of G so x =

∑
g xgg 7→ (

∑
g χ(g)xg)χ∈Ĝ yields |G|

independent linear relations on the xg, hence determining them uniquely. Identifying C[G] with
this product yields

Q[G] = {(yχ)χ∈Ĝ | yσχ = yχσ for all χ ∈ Ĝ and σ ∈ Aut(C)},

and so (2.1) becomes the statement

χ̃(θ∗S(0)R(f)−1)σ = χ̃σ(θ∗S(0)R(f)−1) for all σ ∈ Aut(C).

12



Stark’s conjecture follows from the equality

χ̃(θ∗S(0)R(f)−1) =
L(χ)

det(λ−1
S ◦ f | Vχ)

= A(χ, f)−1,

which we see because χ̃(θ∗S(0)) = L(χ) and χ̃(R(f)) = det(λS ◦ f−1 | Vχ) is the χ-component of
R(f).

This leads us to

Corollary 2.13. Conjecture 2.8 (eTNC) implies Stark’s main conjecture in the abelian setting.

Proof. We show that eTNC implies that θ∗S(0)R(f)−1 ∈ Q[G], so that we are done by proposi-
tion 2.12. This is just unwinding the definition of the determinant lattice.

Upon tensoring with Q, conjecture 2.8 gives

Q[G] · θ∗S(0) = ξS([QE0]Q[G][QE1]
−1
Q[G])

= t(λS)([QUS][QXS]
−1)

= evQXS
([λS(QUS)][QXS]

−1)

= evQXS
([λS ◦ f−1(QXS)][QXS]

−1)

= evQXS
([QXS][QXS]

−1) · detR[G](λS ◦ f−1)

= evQXS
([QXS][QXS]

−1) ·R(f)

= Q[G] ·R(f),

and the claim follows immediately.

Remark 2.14. In addition to Stark’s main conjecture and the other results discussed in this
document, this special case of the eTNC is known to imply many other refinements of Stark’s
conjecture (see [Bur11a, page 19] for a list of examples). ♢
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3 Next steps

We now discuss how our special case of the eTNC can lead us to formulate refinements of the
well-known conjectures we have discussed in section 1. In this way, even though a proof in
full generality may be far off, the eTNC can lead us to improvements of known results and
conjectures which may be more amenable to proof.

3.1 Brumer’s conjecture

We saw in the preceding that the implication

eTNC =⇒ Stark’s (abelian) conjecture

followed after tensoring with Q. We stated earlier that the Brumer–Stark conjecture came from
an ‘integral’ version of Stark’s conjecture in the abelian setting, so it is natural for one to explore
the link between this refinement and conjecture 2.8. We use this example to demonstrate how
the quite opaque eTNC allows us to formulate clear (potential) refinements.

We briefly recap the set-up: K/k is a finite abelian extension of number fields with G =
Gal(K/k), and S is a finite set of places of k including the infinite places and those which
ramify in K.

We will actually consider the following weaker2 version of the Brumer-Stark conjecture, due
only to Brumer.

Conjecture 3.1 (Brumer). For each x ∈ AnnZ[G](µ(K)) and S∞ ⊆ T ⊆ S,

xθS(0) ∈ AnnZ[G](Cl(OT )).

Burns in [Bur11a] poses a question which suggests a generalisation of the above. Clearly
Brumer’s conjecture is not interesting if θS(0) = 0, but recall that in this case the statement
of Stark’s (abelian) conjecture (proposition 2.12) says θ∗S(0) · R(f)−1 ∈ Q[G]. Hence, writing

θ
(r)
S (s) = θS(s)/s

r, the following may be a reasonable generalisation:

Question 3.2 (Burns). Suppose θS(0) vanishes to order r. For each x ∈ AnnZ[G](µ(K)) and
f ∈ HomG(US, XS), is it the case that

xθ
(r)
S (0) ·R(f)−1 ∈ AnnZ[G](Cl(OS))?

Remark 3.3. Macias Castillo shows in [MC13] that question 3.2 has a positive answer for K/k
a quadratic extension, amongst some other cases. ♢

We are cautious to note that a positive answer to question 3.2 would not imply Stark’s
(abelian) conjecture because θ∗S(0) is, in general, different from θ

(r)
S (0). However, we can obtain

a link to a ‘p-adic Stark conjecture’ by observing that question 3.2 naturally splits into the
following questions indexed by prime p:

Question 3.2p. Suppose θS(0) vanishes to order r. For each x ∈ AnnZ[G](µ(K)) and f ∈
HomG(US, XS), is it the case that

xθ
(r)
S (0) ·R(f)−1 ∈ AnnZ[G](Cl(OS))⊗ Z(p)?

2To be chronologically precise, one should point out that the Brumer–Stark conjecture is a generalisation
of Brumer’s conjecture. The former was stated by Tate, who combined Brumer’s original ideas with those of
Stark.
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These questions have been studied by Burns and Macias Castillo, amongst others. The
answer is known to be positive under each of the following circumstances:

1. There are r places in S which are totally split in K/k and µ(K)⊗Z(p) has finite projective
dimension;

2. p ∤ [K : k].

We promised a link to a ‘p-adic Stark conjecture’. Indeed, Burns shows the following (see
[Bur11a, Corollary 3.15]):

Proposition 3.4. Suppose that the ‘p-adic Stark conjecture at s = 1’ holds for K/k. Then the
answer to question 3.2p is postive.

3.2 Refined class number formulas

We saw in proposition 2.10 that the eTNC implies the ANCF up to sign, so it is natural to ask
whether we can also deduce strengthenings of the ANCF such as Gross’ refined class number
formula. We discuss here how congruences such as Gross’ conjecture can be formulated from
conjecture 2.8. As in the earlier discussion of Gross’ refined class number formula, we will avoid
certain techincalities by applying everywhere the functor −⊗Z Z′. We begin with the following
lemma.

Lemma 3.5. There exists an exact sequence

τ ′S : 0 → U ′
S → F

ϕ−→ F
π−→ X̃ ′

S → 0

such that F is a finitely generated free Z′[G]-module and τ ′S corresponds to the class τS under

the natural isomorphism Ext2Z[G](X̃S, US)⊗Z Z′ ∼= Ext2Z′[G](X̃
′
S, U

′
S).

Proof. See [Bur11a, Lemma 3.2].

This allows us to compute Ξ′
S = ΞS⊗ZZ′ by mimicking precisely the construction preceding

definition 2.6, of the determinant lattice ΞS. The use of this is that it gives us the following
(this is [Bur11a, Exercise 3.3]):

Lemma 3.6. Choose sections ι1 and ι2 to the surjections RF ϕ−→ Rim(ϕ) and RF π−→ RX̃ ′
S

respectively. We have
Ξ′
S = Z′[G] · detR[G](ϕ̂),

where ϕ̂ is the unique R[G]-module automorphism of RF which agrees with ι2◦λS on U ′
S (viewed

as a submodule of F ) and with ϕ on ι1(Rim(ϕ)).

Proof. First note that we have detR[G](ϕ̂) = detR[G](ι2 ◦ λS) · detR[G](ϕ ◦ ι1), because we have
RF ∼= RU ′

S ⊕ Rim(ϕ). Recall that lemma 2.2 gives us a commutative diagram

[RU ′
S]R[G][RU ′

S]
−1
R[G] R[G]

R[G]⊗ R[G] R[G]

t(ι2◦λS)

id

× detR[G](ι2◦λS) .

Likewise, the diagram

[Rim(ϕ)]R[G][Rim(ϕ)]−1
R[G] R[G]

R[G]⊗ R[G] R[G]

t(ϕ◦ι1)

id

× detR[G](ϕ◦ι1)
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commutes. Unravelling the construction of Ξ′
S (as for ΞS), we have that this is the image of

[QF ][QF ]−1 under the map

[RF ]R[G][RF ]−1
R[G] → [RU ′

S]R[G][Rim(ϕ)]R[G][Rim(ϕ)]−1
R[G][RX̃

′
S]

−1
R[G] → [RU ′

S]R[G][RX̃ ′
S]

−1
R[G] → R[G],

and identifying X̃ ′
S with U ′

S via ι2, we see from above that the diagram

[RF ]R[G][RF ]−1
R[G] R[G]

R[G]⊗ R[G] R[G]id

× detR[G](ϕ◦ι1)·detR[G](ι2◦λS)

commutes; hence the result.

For each irreducible character χ ∈ Ĝ of G, we consider the element

eχ =
χ(1)

|G|
∑
σ∈G

χ(σ−1)σ

of C[G]. Then eχ is a central idempotent and for an irreducible complex representation V of G
we have

eχ(V ) =

{
V, if V affords character χ

0, else.

In particular, this allows us to rewrite θS(0) =
∑

χ∈Ĝ L(χ, 0)eχ. Note that the complex conjug-
ation here is essentially an artefact of our use of the arithmetic Frobenius in the definition of
Artin L-functions, rather than the geometric Frobenius. We will also consider the element e0,
defined by

e0 =
∑
χ∈Ĝ0

eχ,

where Ĝ0 = {χ ∈ Ĝ | L(χ, 0) = 0}. This is a natural element to introduce, as we intend to
study θ∗S(0) = θS(0)e0. Note that we also have the alternative descriptions

Ĝ0 = {χ ∈ Ĝ | eχ(CXS) = 0} = {χ ∈ Ĝ | eχ(CUS) = 0}. (3.1)

Then we have

Proposition 3.7. The eTNC (conjecture 2.8) implies that there exists a unit u ∈ Z′[G] such
that

θS(0) = u · detZ′[G](ϕ).

Proof. We have

θS(0) = θ∗S(0)e0

= u · detR[G](ϕ̂)e0 (eTNC + lemma 3.6)

= u · detR[G](ϕ)e0 (e0(QUS) = 0 by (3.1))

= u · detZ′[G](ϕ).

The final equality follows from the fact that detZ′[G](ϕ) = detZ′[G](ϕ)e0, which in turn follows

from the implication χ(C ker(ϕ)) = 0 =⇒ χ ∈ Ĝ0. Indeed, suppose χ(C ker(ϕ)) = 0. Then
upon identifying U ′

S with ker(ϕ), the claim follows from (3.1).
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We will combine proposition 3.7 with the following in order to obtain a congruence condition
on θS(0).

Lemma 3.8. There exists a Z′[G]-basis {fi}1≤i≤d for F such that

1. F1 = ⟨f1, . . . , fr⟩Z′[G] satisfies FG
1 = ker(ϕG);

2. F2 = ⟨fr+1, . . . , fd⟩Z′[G] satisfies ϕ(FG
2 ) ⊆ FG

2 .

Proof. See [Bur11a, Lemma 3.2].

This tells us that, with respect to the basis {fi}1≤i≤d of F , the matrix for ϕ is a block matrix
of the form (

A B
C D

)
,

where A ∈ Mr×r(I), B ∈ M(d−r)×r(I), C ∈ Mr×(d−r)(I), and D ∈ M(d−r)×(d−r)(Z′[G]). Hence
the equality of proposition 3.7 becomes

θS(0) ≡ u · detD detA (mod Ir+1).

This congruence will turn out to be equivalent to the version of Gross’ refined class number

formula we stated earlier. To show this we consider the complexes F
ϕ−→ F and FG ϕG

−→ FG,
denoted F • and F •,G respectively. From the definition of I we obtain

0 → I ⊗Z′[G] F
• → F • → F •,G → 0

and hence, via the snake lemma, a homomorphism ker(ϕ)G → I ⊗Z′[G] cok(ϕ). Thereby we
obtain a map ker(ϕ)G → I/I2 ⊗Z′ cok(ϕ)G, and so a pairing

ker(ϕ)G × HomZ′(cok(ϕ)G,Z′) → I/I2.

Recalling lemma 3.5, we identify ker(ϕ)G with U ′
k,S and cok(ϕ)G with X ′

k,S. We also identify
I/I2 with G′ = G⊗Z Z′ as before. Finally then, this gives us a pairing

ρ : U ′
k,S ×X ′

k,S → G′.

We finish by noting that this pairing agrees with the pairing ρ defined in section 1.4.

Theorem 3.9. The two pairings ρ defined here and in section 1.4 agree. There exist bases of
U ′
k,S and X ′

k,S such that

det(ρ(ui, xj)− 1)1≤i,j≤r = u · det(D) det(A) ∈ Ir/Ir+1.

Proof. See [Bur11a, Lemma 3.5 & Theorem 3.7].

This shows

Corollary 3.10.
eTNC =⇒ conjecture 1.21.

We also note that only theorem 3.9 required specific knowledge of the construction of τS,
and hence this methodology is widely applicable in other special cases of the eTNC to deduce
congruences on leading terms of L-functions at critical values.
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4 Epilogue

The goal of this project has been to introduce the reader—perhaps more accurately, the au-
thor—to the equivariant Tamagawa Number Conjecture via the more approachable conjecture
of Stark and its refinements. In particular, the goal has been to appreciate that understanding
a conjecture’s place in the wider conjectural framework is important in studying the original
conjecture and its refinements, even if one is not attempting to tackle the wider conjectures dir-
ectly. Indeed, we began this document by discussing the analytic class number formula, which
led to Stark’s conjectures and their refinements, but we can also study other leading term (con-
jectural) results in similar ways. For example—and of most interest to the author—one might
consider a ‘cousin’ of the ACNF: the conjectural leading term formula given by the Birch–
Swinnerton-Dyer conjecture (BSD). A different special case of the eTNC can be formulated
which is to BSD as conjecture 2.8 is to the ACNF (see [BC19]), by which we mean that the
eTNC should lead in some sense to a ‘universal refinement’ of BSD. In fact, using essentially
the same strategy as we used to deduce corollary 3.10, one may deduce analogous congruences
for the leading terms of Hasse-Weil L-functions at s = 1.

The eTNC is thought in general to encompass leading term conjectures for the broad class
of motivic L-functions. See, for example, [Ven07, §2] for an introduction to motives and motivic
L-functions.

In this project we have largely kept ourselves to the case of abelian extensions of number
fields, but we should point out that much of what has been said generalises naturally to the case
of non-abelian extensions and to the case of global function fields. In the function field case
(as is common) things turn out to be more simple; Burns shows in [Bur11b] that the analogue
of conjecture 2.8 is known to hold for function fields.

As already discussed, we have seen how the eTNC can be used to generate further refine-
ments of more simple well-known conjectures, but we have spoken little about the eTNC being a
pathway to verifying these large classes of refinements. Before we end we should briefly discuss
this path. Tackling conjecture 2.8 in general is extremely difficult and, as mentioned in remark
2.9, much of this difficulty boils down to computing the canonical class τS in general. More
general cases of the eTNC are more difficult still, because it is no longer sufficient to work with
the singular perfect 2-extension τS; rather one must work with ‘perfect complexes’ over Zp[G]
for each prime p and piece together this information over different primes.
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