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Abstract

For a curve C with automorphism group G over a number field, we associate to
representations ρ of G certain L-functions L(C, ρ, s) and study their behaviour at
s = 1. In particular, we suggest an analogue of the conjectural BSD rank formula
for Artin-twists and give some discussion on periods associated to these L-functions.
Lastly, we explain how one might compute these L-functions numerically.

A curve, with Galois field of functions,
Over a number field, where we lay our scene,
From additive pieces guides to junctions,
Where covert factors make covert series unclean
...
From forth the loins of Tate’s module sometimes,
A set of star-cross’d spaces split apart;
Who with dark and heinous, yet intricate, crimes,
Do in segregation sever the L-series at the heart.
...
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1 Introduction

Given an elliptic curve E/Q, we associate to it a Hasse–Weil L-function defined via its
Euler product

L(E, s) =
∏

p|∆E/Q

(1− app
−s)−1 ·

∏
p∤∆E/Q

(1− app
−s + p1−2s)−1,

where ap = 1+p−#Ẽ(Fp). Conjectured by Birch and Swinnerton-Dyer in the 1960s, the
‘BSD rank formula’ predicts that that the order of vanishing of L(E, s) at s = 1 should
be equal to the Mordell–Weil rank of E, assuming meromorphic continuation.

Conjecture 1.1 (BSD rank formula).

ords=1 L(E, s) = rk(E/Q).

Proving this conjecture is one of the biggest open problems in modern number theory,
if not all mathematics; indeed, this is one of the Clay Mathematics Institute’s ‘Millennium
Prize Problems’, worth $106 to any potential solver.

There is a natural generalisation of the BSD rank formula which replaces elliptic curves
by more general abelian varieties, noting that the Euler factor at p in the above is precisely

det(1− p−s Frob−1
p | V

Ip
ℓ )−1,

independent of choice of prime ℓ ̸= p, and where Vℓ = TℓE ⊗Zℓ
Qℓ is the Qℓ-vector space

defined by the ℓ-adic Tate module of E. This leads us to define

L(A/K, s) =
∏
p

det(1−N(p)−s Frob−1
p | V

Ip
ℓ )−1,

where this product is over proper prime ideals p of OK . Moreover, for each Artin repres-
entation of GK , one may define an ‘Artin-twisted’ L-function

L(A/K, ρ, s) =
∏
p

det(1−N(p)−s Frob−1
p | (ρ⊗ Vℓ)

Ip)−1.

These Artin-twists satisfy a so-called ‘Artin formalism’:

Lemma 1.2. (i) For ρ1 and ρ2 factoring through Gal(F/K) we have

L(A/K, ρ1 ⊕ ρ2, s) = L(A/K, ρ1, s) · L(A/K, ρ2, s).

(ii) For F ′/F a finite Galois extension and ρ factoring through Gal(F ′/F ), we have

L(A/K, Ind
Gal(F ′/K)
Gal(F ′/F ) ρ, s) = L(A/F, ρ, s).

These properties, as well as general considerations of Deligne, led to a conjectural
analogue of the BSD rank formula for Artin-twists of abelian varieties:

Conjecture 1.3 (Deligne–Gross).

ords=1 L(A/K, ρ, s) = ⟨A(F )⊗Z C, ρ⟩,

for ρ an Artin representation factoring through Gal(F/K), where this is the usual representation-
theoretic inner product.
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1.1 Summary

We view Conjecture 1.3 as a prediction of a duality between the decompositions of the
Mordell–Weil group and of the Tate module VℓA into Gal(F/K)-representations, and ask
whether this duality holds when replacing Gal(F/K) by a finite group G whose action
commutes with that of GK . In particular, our aim is to state an analogue of this conjecture
for Jacobians of curves with automorphisms.

Since the ‘60s, many of the concepts considered by Birch and Swinnerton-Dyer have
been generalised. In particular, the insight of Grothendieck led to the conception of
‘motives’, offering a generalisation of abelian varieties and equipped with motivic L-
functions which generalise the Hasse–Weil L-functions defined above. We will con-
sider pure motives, which we view as a collection of cohomologies—called realisation
data—equipped with comparison isomorphisms. Most relevant to us will be the ℓ-adic
realisations; to a d-dimensional K-motive M , we associate a d-dimensional Qℓ-vector
space Hℓ(M) with a continuous representation

ρM,ℓ : GK → AutQℓ
(Hℓ(M)).

We then define the L-function

L(M, s) =
∏
p

det(1−N(p)−s Frob−1
p | Hℓ(M)Ip)−1

and take as a standing assumption that L(M, s) has meromorphic continuation and sat-
isfies a functional equation1. The general conjecture of Deligne which we will apply is the
following (cf. [Del79, Conjecture 2.7]):

Conjecture 1.4 (Deligne). Let F/Q be Galois such that the Euler factors of L(M, s) are
defined over F . For each σ ∈ Gal(F/Q) we have

ords=m L(M, s) = ords=m Lσ(M, s),

where this notation means applying σ on the level of local polynomials (with some assump-
tions on m, cf. Section 3.3).

To an abelian variety A of dimension g, we associate a motive h1(A) of dimension 2g
such that L(h1(A), s) = L(A, s) (i.e. the ‘ℓ-adic realisation’ is the usual first étale cohomo-
logy, or the dual of VℓA). Suppose that A/K is an abelian variety with an action of the
finite group G by automorphisms defined overK. We will seek to study the decomposition
of h1(A) under the action of G, via the decompositions of the ℓ-adic realisations. Often
an abelian variety with automorphisms will have complex multiplication (CM), recall:

Definition 1.5. Write End0(A) = End(A)⊗Z Q. We say A has CM if End0(A) contains
a 2g-dimensional commutative sub-algebra.

In the case that an elliptic curve E has CM, one finds that there is a factorisation

L(E, s) = L(χ, s) · L(χ, s),

into complex conjugate Hecke L-functions. It is an observation of Shimura–Taniyama
that this phenomenon is general. Indeed, they were able to show the following (slightly-
imprecisely-stated) theorem away from all but finitely many primes, with the proof for
all primes completed by Serre–Tate.

1This justifies our use of the terminology ‘L-function’ throughout; it is common in the literature to
refer to the ‘L-series’ until analytic continuation is known.
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Theorem 1.6 (Shimura–Taniyama, Serre–Tate). Suppose A/K is a simple abelian variety
with CM. The L-function L(A/K, s) factors as a product of conjugate Hecke L-functions.

This observation translates in the motivic setting to a decomposition of h1(A) into
1-dimensional motives. It is a natural to wonder whether, under the condition that A
have automorphisms, we may be able to draw similar conclusions about the structure of
h1(A) as to those drawn by Shimura and Taniyama. In many cases these decompositions
will align; elliptic curves with more automorphisms than just the inversion map on points
automatically have CM, for example. In fact, all 1-dimensional submotives of abelian
varieties correspond to Hecke motives (cf. [Sch88, Theorem 6.6.1]).

The special case to which we typically restrict ourselves is that of the Jacobian variety
JC associated to a curve C over a number field K. If C is a curve of genus g, then JC
is an abelian variety of dimension g, defined as the connected component of the identity
in the Picard group of C. In particular, if E is an elliptic curve, then E ∼= JE (this is
a standard way to prove that the rational points of E form a group). Importantly, the
Weil conjectures tell us that—similarly to the elliptic curves case above—the L-function
L(C/K, s) = L(JC/K, s) can be computed just by counting points on the curve C over
finite fields. Hence, we rarely have to worry about explicitly dealing with the Jacobian.

In the case of a curve C/K over a number field, JC inherits automorphisms from C.
Hence, if C is a curve on which the finite group G acts by automorphisms defined over K,
thenG acts on JC ; this is how we will construct examples. In particular, G acts on both the
Mordell–Weil group of JC over K and on VℓJC—i.e. on the ℓ-adic realisation Hℓ(h

1(A)).
Under certain circumstances we can view the latter as a complex representation of G,
on which the action of G commutes with that of GK . Hence we obtain an isotypic
decomposition of Vℓ under the action of G that consists of GK-stable pieces. Näıvely, one
might define L-functions via the action of GK on these stable pieces of Vℓ, but with such a
definition one would not have an analogue of the Artin formalism when G is non-abelian.
Instead we define new L-functions in the following way, which aligns with the näıve way
in the case that G is abelian.

Definition 1.7 (=4.2). Given a representation ρ of G, we define

L(C/K, ρ, s) =
∏
p

det(1−N(p)−s Frob−1
p | HomG(ρ, Vℓ)

Ip)−1,

where this is the determinant of the map on HomG(ρ, Vℓ)
Ip defined by postcomposition.

Importantly, here we have an analogue of the Artin formalism because

HomH(ρ,Res
G
H V ) ∼= HomG(Ind

G
H ρ, V )

by Frobenius reciprocity. The analogue of the Artin formalism in this setting suggests
that Definition 1.7 is the ‘correct’ definition.

As mentioned, these L-functions will often be related to Hecke L-functions. In the
case of a curve C/K and F/K a finite extension of number fields, we often find that the
L-functions L(C/F, ρ, s) are related to the Hasse–Weil L-functions L(C/K, s). Moreover,
when C/F is isomorphic over a larger field to a curve D defined over K, we often find
that the L-functions L(C/F, ρ, s) correspond to Artin-twists of L(D/K, s). One might
note, then, that often

ords=1 L(C/K, ρ, s) = ⟨JC(K)⊗Z C, ρ⟩,

as a consequence of the conjectures discussed above.
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In addition to the above observations, then, because the actions of GK and G on Vℓ

commute, it is natural to ask whether the duality predicted by the BSD rank formula for
Artin-twists should also hold in this situation.

This leads us to conjecture:

Conjecture 1.8 (=4.20).

ords=1 L(C/K, ρ, s) = ⟨JC(K)⊗Z C, ρ⟩.

From a computational point of view, one can test this conjecture by numerically
computing these L-functions by counting fixed points of certain endomorphisms on the
reduced curves C̃(Fp) as p varies, as a consequence of the Weil conjectures.

In general, we use standard tools of representation theory—in particular, Frobenius re-
ciprocity and Artin induction—to emulate the deduction of Conjecture 1.3 from Deligne’s
conjecture and the usual BSD rank formula showing:

Theorem 1.9 (=4.19). Deligne’s conjecture and the BSD rank formula imply Conjecture
1.8.

The BSD rank formula is only one part of a stronger conjecture of Birch and Swinnerton–
Dyer which predicts a formula for the leading term of the Hasse–Weil L-function L(A/K, s)
at s = 1 in terms of the arithmetic data of A. Potential analogous formulae for Artin-
twists have been studied by V. Dokchitser, Evans and Wiersema in [DEW21]; hence it
is natural to wonder whether we can replicate or extend their results in this setting. We
give some discussion on the periods associated to the L-functions L(C/K, ρ, s), which
conjecturally give the ‘irrational part’ of the L-value at s = 1.

The full statement of BSD has been absorbed into a vast conjectural edifice—most
notably, as a special case of the (equivariant) Tamagawa Number Conjecture of Bloch–
Kato (and Burns–Flach). Through this lens, Burns and Macias Castillo considered refined
BSD-type conjectures in [BC19], including of the type considered in [DEW21]. It is again
natural to ask how one can fit analogous leading term conjectures on the L-functions of
Definition 1.7 into this framework.

1.2 Structure

In Section 2 we discuss all the relevant background information, including abelian varieties,
L-functions and complex multiplication.

In Section 3 we give an introduction to motives from two points of view, before introdu-
cing the full statement of Deligne’s conjecture and discussing some example applications.
In particular, we show how this conjecture can be used to deduce a rank formula for
Artin-twisted L-functions, which we mimic in the sequel.

In Section 4 we define the L-functions with which we are concerned and deduce Conjec-
ture 1.8 from standard conjectures. We also give some discussion on the relative scarcity of
‘interesting examples’ of curves C; we often dismiss the L-functions L(C/K, ρ, s) which co-
incide with Hasse–Weil L-functions, Artin-twists, or Hecke L-functions as ‘uninteresting’,
because Conjecture 1.8 tends to coincide with the BSD rank formula (for Artin-twists)
and their periods are similarly well-understood. Lastly, we discuss examples in the case
of elliptic and hyperelliptic curves.

In Section 5 we describe how one might compute the L-functions we define, and briefly
discuss the first ‘interesting’ cases one might tackle computationally: the genus 3 family
of Picard curves over Q(ζ3), equipped with an action of the cyclic group C3.

Finally, in Section 6 we give some brief discussion on the next steps one might take in
the study of these L-functions.
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2 Background

We begin with a summary of the relevant background information: the main definitions
and properties of abelian varieties and Jacobians of curves, followed by a summary of the
background information on the relevant L-functions for our project.

2.1 Abelian varieties

Abelian varieties are higher dimensional generalisations of elliptic curves. Their study is
a vast topic in number theory and algebraic geometry, so here we just recall some simple
notions that will be useful later on. We recommend [Mil08] or [EvdGM] for a detailed
treatment of the topic. More formally:

Definition 2.1. A group variety over a fieldK is a group object in the category of varieties
over K; equivalently it’s a variety A over K endowed with morphisms mA : A× A→ A,
iA : A → A and a point 0A ∈ A(K) which endow A(L) with the structure of group for
every field extension L/K.

Definition 2.2. An abelian variety over K is a complete and connected group variety
over K.

The group structure and additional properties have several deep implications; in par-
ticular, the group structure on an abelian variety is always abelian2 and every abelian
variety is projective. Therefore, for our purposes, it suffices to define abelian varieties to
be projective and connected abelian group varieties.

Instead of studying abelian varieties up to isomorphism, it is often useful to relax the
equivalence conditions and consider them up to isogeny.

Definition 2.3. A homomorphism of abelian varieties f : A→ B is said to be an isogeny
if satisfies one of the following equivalent conditions:

(i) f is surjective and dim(A) = dim(B);

(ii) ker(f) is a finite group scheme and dim(A) = dim(B);

(iii) f is a finite, flat and surjective morphism.

If such an f exists, we say A and B are isogenous and write A ∼ B. Such an f induces an
injection f ∗ : K(B) ↪→ K(A) on the level of function fields; we say deg f = [K(A) : K(B)]
is the degree of f .

Example 2.4. For an abelian variety A and each n ∈ Z, we have an isogeny [n] : A→ A
given by P 7→ nP . The kernel of [n] is precisely the n-torsion points of A, denoted
A[n]. ♢

The property of being isogenous clearly satisfies reflexivity and transitivity. It is then
an equivalence relation because, for every isogeny f : A→ B, there exists a dual isogeny
g : B → A such that g ◦ f = [d]A and f ◦ g = [d]B, where d = deg f .

Definition 2.5. A non-trivial abelian variety A over a field K is said to be simple if it
has no proper abelian subvarieties.

2Nevertheless, the name ‘abelian variety’ refers to a correspondence with abelian integrals studied by
N. H. Abel.
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Remark 2.6. It is important to underline that the simpleness property depends on the
ground field K, since a base extension of a simple abelian variety might not be simple.
Sometimes we write K-simple to make this dependence explicit. ♢

The definition of simple abelian variety is fundamental in light of the Poincaré Splitting
theorem, which states that for every abelian subvariety X ⊂ A, there exists a comple-
mentary abelian subvariety Y , i.e. one such that X × Y ∼ A. Combining this with the
fact that a homomorphism of simple abelian varieties is either an isogeny or the zero map,
the following decomposition should now appear natural.

Proposition 2.7. A non-trivial abelian variety over K is isogenous to a product of simple
abelian varieties; moreover, the factors are unique up to isogeny.

Even though we will always work over a number field K, it is important to characterise
abelian varieties over the complex numbers. Indeed, as for elliptic curves, every abelian
variety over C is isomorphic to a complex torus Cg/Λ for some 2g-dimensional lattice Λ.
The only difference between the general case and the case g = 1 is that not all tori can
be obtained in this way; a complex torus arises from an abelian variety if it is polarisable,
i.e. if it admits a Riemann form.

Remark 2.8. Using the lattice structure for an abelian variety of dimension g, we have
that the group of n-torsion points A(K)[n] = A(C)[n] is isomorphic to (Z/nZ)2g. ♢

This leads us to the following definition:

Definition 2.9 (Tate module). Let ℓ be a rational prime. The ℓ-adic Tate module TℓA
is the free Zℓ-module of rank 2g defined as the inverse limit of the system

A[ℓ]
[ℓ]←− A[ℓ2]

[ℓ]←− . . .
[ℓ]←− A[ℓn]

[ℓ]←− . . . .

Moreover, we define the 2g-dimensional Qℓ-vector space Vℓ = VℓA = TℓA⊗Qℓ.

Finally, we recall the Mordell–Weil theorem on the finite generation of rational points
of abelian varieties.

Theorem 2.10 (Mordell–Weil). For an abelian variety A defined over a number field K,
the K-rational points A(K) form a finitely generated abelian group.

2.2 Jacobians of curves

Let K be a number field with algebraic closure K and absolute Galois group GK . For a
curve C/K of genus g > 1 we consider the group of divisors DivK(C), i.e. the free abelian
group generated by the points on C(K), and its subgroup PrincK(C) of principal divisors.
The degree of a divisor is the sum of its coefficients. We define the Picard group of C as
the quotient

PicK(C) = DivK(C)/PrincK(C).

Because principal divisors have degree 0, we can talk about the degree of a divisor class in
the Picard group. The classes of degree 0 form a subgroup which we denote by Pic0

K
(C).

For a non-singular curve C this subgroup can be given the structure of a projective abelian
variety of dimension g defined over K. The resulting variety is called the Jacobian variety
of C and denoted JC . TheK-rational points on JC are the GK-stable elements of Pic0

K
(C):

JC(K) = Pic0
K
(C)GK .

Similarly, one can define
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� DivK(C) := DivK(C)GK ,

� PrincK(C) := PrincK(C)GK ,

� PicK(C) := DivK(C)/PrincK(C),

� Pic0K(C) := {D ∈ PicK(C) | deg(D) = 0}.

Note that in general JC(K) ≇ Pic0K(C), because a K-rational divisor class does not, in
general, contain a K-rational divisor. However, when C(K) ̸= ∅ they are isomorphic
(e.g. [PS97, Proposition 3.2]). Moreover, under the same assumption, the variety JC can
be defined categorically because it represents a particular functor P 0

C ∈ Fun(VarK ,Grp)
(e.g. [Mil08, Theorem 1.2]). The construction of JC is definitely non-trivial, but we only
require some simple properties:

Remark 2.11. For every point P0 ∈ C(K), there is a regular map φP0 : C → JC defined
on points via P 7→ [P − P0]. Each pair of maps φ• differs by a translation in JC . ♢

Example 2.12. Fix an elliptic curve E with identity 0E. For every divisor D ∈ Div0
K
(E)

there exists a unique point P ∈ E(K) such that D ∼ (P )− (0E) (e.g. [Sil09, Proposition
III.3.4]). This implies that φ0E : E → JE defines an isomorphism of elliptic curves. ♢

Remark 2.13. Every morphism of curves f : C → C ′ induces a homomorphism f ∗ :
Pic0(C ′)→ Pic0(C) functorially with respect to base extensions; thus f induces a morph-
ism JC′ → JC . In particular, every automorphism of C induces an automorphism of JC .
We will be interested in the automorphisms of VℓJC induced by those of C. ♢

In general, every abelian variety can be realised as a quotient of the Jacobian of a
certain curve. This means that sometimes it is sufficient to treat questions on abelian
varieties only at the level of Jacobian varieties.

2.3 Weil conjectures

We now discuss some results on varieties over finite fields, as we will eventually need to
study the reduction of abelian varieties over number fields modulo primes. These are
the Weil conjectures, proved as the culmination of work by Dwork, Grothendieck, and
Deligne, amongst others. All the relevant background can be found, for example, between
[Har77, Appendix C] and the Stacks project [Sta18].

Fix a smooth proper variety3 X over Fq of dimension d. We define the zeta function
of X by

Z(X;T ) = exp

(∑
n≥1

#X(Fqn)
T n

n

)
.

We then have:

Theorem 2.14 (Weil conjectures). We have each of the following properties:

1. Z(X;T ) is a rational function

Z(X;T ) =
P1(T ) . . . P2d−1(T )

P0(T ) . . . P2d(T )

such that for each 1 ≤ i ≤ 2d − 1 the polynomial Pi(T ) ∈ Z[T ] has complex roots
with absolute value qi/2 (i.e. Z(X;T ) satisfies the ‘Riemann hypothesis’).

3More generally, a scheme of finite type.

9



2. Z(X;T ) satisfies a functional equation

Z(X; q−(d−s)) = ±qχ(
d
2
−s)Z(X; q−s),

where χ is the Euler characteristic of X.

3. If X is the reduction modulo p of a smooth proper variety Y over a number field,
then degPi(T ) is the ith Betti number of Y (C).

Remark 2.15. Only the first two properties will be relevant to this project, so one needn’t
worry about the Betti numbers in property 3. ♢

The proof of the Weil conjectures relies on a so-called ‘Weil cohomology theory’ with
coefficients in a characteristic 0 field K. This is a contravariant function X → ⊕iH

i(X)
from smooth projective varieties over Fq to graded anti-commutative algebras over K
which satisfies various properties (see [Sta18, 0FHA]). We will focus on the following
properties, although there are many more:

1. H i(X) is a finite dimensionalK-vector space which vanishes for i ̸∈ {0, 1, . . . , 2 dimX}.

2. Every morphism f : X → Y of smooth projective varieties induces a pullback
morphism of graded K-algebras f ∗ : H•(Y )→ H•(X).

3. We have Poincaré duality, i.e. a perfect pairing

H i(X)×H2d−i(X)→ H2d(X).

Fact. For ℓ coprime to q, the étale cohomology H•
et(X,Qℓ) is a Weil cohomology theory.

We now pivot from a general Weil cohomology theory to dealing with étale cohomology.
The above properties give us:

Theorem 2.16 (Lefschetz trace formula). Let X be a smooth projective variety over Fq

with base change X to Fq with endomorphism f . Then∑
x∈Fix(f)

i(f, x) =
∑
k≥0

(−1)k Tr(f ∗ | Hk
c (X,Qℓ)),

where i(f, x) is the index of the fixed point x, and H•
c denotes étale cohomology with

compact support.

Remark 2.17. We do not include a definition of the index i(f, x) because in the cases with
which we are concerned, each of the fixed points will have index 1. This gives us

#Fix(f) =
∑
k≥0

(−1)k Tr(f ∗ | Hk
c (X,Qℓ)), (2.1)

which we will discuss further in the setting of algebraic curves. ♢
Example 2.18. Suppose that X is an algebraic curve, so that we only get contributions
in (2.1) for k = 0, 1, 2, and take f = Φ to be the q-power Frobenius. Writing µℓ for the
ℓ’th roots of unity in Fq, we have

Hk
c (X,µℓ) =


µℓ, if k = 0

Pic(X)[ℓ], if k = 1

Z/ℓZ, if k = 2

0 if k ≥ 3,
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so that, after taking projective limits and tensoring with Qℓ, we find

rkQℓ
Hk

c (X,Qℓ) =


1, if k = 0

2g, if k = 1

1, if k = 2

0, if k ≥ 3.

In particular, H1
c (X,Qℓ) is the dual of VℓJX , and hence the contribution from the term

k = 1 is the sum of the eigenvalues of Φ on VℓJX . Using Poincaré duality we find
det(Φ∗ | H2

c (X,Qℓ)) ·det(Φ∗ | H0
c (X,Qℓ)) = q. Because the action on H2

c (X,Qℓ) is trivial
and these spaces are 1-dimensional, we find

#Fix(Φn) = 1 + qn −
2g∑
i=1

γn
i , (2.2)

where the γi are the eigenvalues of Φ on Vℓ. ♢

Equation (2.2) gives an example of the following special case of the Lefschetz trace
formula, which will play an important role in our computation of L-functions in Section
5.

Theorem 2.19 ([Mil08, Proposition III.11.2]). Let C be a smooth projective curve over
Fq with base change C to Fq with endomorphism α. Then

#Fix(α) = 1 + deg(α)−
2g∑
i=1

γi,

where the γi are the eigenvalues of the action on Vℓ induced by α.

2.4 Representation theory

Here we briefly recall some tools from the representation theory of finite groups, which is
sometimes overlooked by number theorists4. Throughout, ρ will denote a representation
ρ : G→ GL(V ) with G a finite group and V a complex vector space.

Remark 2.20. Equivalently, one may view a representation V as a vector space equipped
with a linear action of the group G. As is standard, we will typically identify the homo-
morphism ρ with the vector space V under the specified action of G. ♢

Definition 2.21. For a field K we say that a representation ρ of G can be realised over
K if for all g ∈ G we can realise ρ(g) as a matrix with coefficients in K. Representations
that can be realised over Q are called rational.

Example 2.22. For an abelian variety A/K and a finite Galois extension F/K, the action
of Gal(F/K) on A(F )⊗Z C defines a rational representation. ♢

The following theorem—originally due to Brauer—describes a ‘field of realisation’ KG

for the irreducible representations of a finite group G.

Theorem 2.23 ([Isa76, Theorem 10.3]). Let G be a finite group of exponent n. Every
irreducible complex representation ρ of G can be realised over KG := Q(ζn).

4At least, it was by some of the authors!
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Note that KG is Galois over Q. Hence we obtain a Galois action on the irreducible
representations ρ of G, where σ ∈ Gal(KG/Q) acts on the level of coefficients in the
matrix realisation of ρ. We denote the resulting representation by ρσ. Note that two
irreducible representations are Galois conjugate if and only if their afforded characters
are. In particular, we see that a representation is rational if and only if its character takes
rational values. Moreover, we obtain the following lemma.

Lemma 2.24. Let ρ be a rational representation of a finite group G with decomposition

ρ = m1ρ1 +m2ρ2 + . . .+mkρk

into irreducible representations of G. Then, for any σ ∈ Gal(KG/Q), if ρi = ρσj then
mi = mj.

Let ρ : G→ GL(V ) a finite dimensional complex representation of the finite group G

and let χ = Tr(ρ) be the associated character. If H ≤ G, then ResGH ρ : H ↪→ G
ρ−→ GL(V )

is the restriction of ρ to H, affording the character ResGH χ.
Conversely, let χ a character of H ≤ G, then the induced class function on G is defined

by

IndG
H χ(g) =

1

|H|
∑
x∈G

χ′(x−1gx)

where χ′(x) = χ(x) if x ∈ H and 0 otherwise.
The class function IndG

H χ is always a character and if the representation ρ of H affords
the character χ then we define the induced representation IndG

H ρ as the representation of
G affording the character IndG

H χ. The results on induction and restriction which will be
relevant to us are Frobenius reciprocity and Artin induction:

Theorem 2.25 (Frobenius reciprocity). Let χ be a character of H and ξ a character of
G. Then

⟨χ,ResGH ξ⟩H = ⟨IndG
H χ, ξ⟩G.

Here, ⟨·, ·⟩ is the standard representation-theoretic inner product; in particular, for ξ
an irreducible representation, ⟨ρ, ξ⟩ is the ‘multiplicity of ξ in ρ’.

Remark 2.26. Frobenius reciprocity says that IndG
H and ResGH are adjoint functors. This

gives
HomH(ρ,Res

G
H V ) ∼= HomG(Ind

G
H ρ, V ),

cf. Lemma 4.7. ♢

Theorem 2.27 (Artin induction). Let X be a family of subgroups of G such that G =⋃
g∈G,H∈X g−1Hg. Then for every character χ of G there exists a positive integer d, a

character χH and integers aH for every H ∈ X such that

dχ =
∑
H∈X

aH IndG
H χH .

In particular, the Artin induction formula holds for X the set of cyclic subgroups of
G.

Artin induction is a weak version of the more-commonly-used Brauer induction, which
allows one to take d = 1 by replacing cyclic groups by the set of subgroups containing
direct products of cyclic groups and subgroups of prime-power order.

12



Theorem 2.28 (Brauer induction). Let X be the set of subgroups consisting of direct
products of cyclic subgroups and p-groups for any prime p. Then for any character χ of
G, there exists a character χH and integers aH for each H ∈ X such that

χ =
∑
H∈X

aH IndG
H χH .

Notation. From now on, we often adopt the standard convention of identifying a repres-
entation ρ with its afforded character Tr(ρ).

2.5 Hasse–Weil L-functions

All the relevant information for this section can be found between the standard reference
[Sil09] and [DEW21], for example. We quickly recall the definition of Frobenius auto-
morphisms: let p be a prime of OK , and fix a choice of decomposition group Gp ⊂ GK

and inertia subgroup Ip ◁ Gp.

Definition 2.29 (Frobenius). For p a prime of OK , the Frobenius automorphism is
Frobp ∈ Gp/Ip. We consider this an element of GK , defined up to inertia and conjugation.

Remark 2.30. In finite abelian extensions L/K, the restriction of the Frobenius auto-
morphism is characterised by the property

Frobp x− xN(p) ∈ pOℓ

for all x ∈ Oℓ. ♢
Fix an abelian variety A of dimension g defined over a number field K. Note that GK

acts naturally on A[ℓn] for each n, from which VℓA inherits an action, and which we use
to define the Hasse–Weil L-function L(A/K, s) via its Euler product as follows.

Definition 2.31 (Hasse–Weil L-function).

L(A/K, s) =
∏

p ◁OK prime

Pp(N(p)−s)−1,

where Pp(T ) = det(1− T Frob−1
p | V

Ip
ℓ ), independent of choice of p ∤ l.

Remark 2.32. This is well-defined because the Frobenius is well-defined up to conjugation
and inertia. Moreover, for primes of good reduction V

Ip
ℓ = Vℓ and we need not worry

about the inertia subgroup. ♢

Example 2.33. In the case of elliptic curves, we find that for primes of good reduction
we have

Pp(T ) = 1− apT +N(p)T 2,

where ap = 1 +N(p)− |E(Fp)|. For primes of bad reduction we have

Pp(T ) =


1, if A has additive reduction at p

1− T, if A has split multiplicative reduction at p

1 + T, if A has non-split multiplicative reduction at p

,

which can again be summarised as Pp(T ) = 1− apT . ♢
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Example 2.34. The example in which we will be primarily interested is that of Jacobians
of curves. In this case we write L(C/K, s) as shorthand for L(JC/K, s); this notation is
appropriate because to understand L(C/K, s), it suffices to understand the reduced curve
modulo p for primes p of K. Indeed, for primes p of good reduction, one finds that the
zeta function

Z(C̃;T ) =
P (T )

(1− T )(1− qT )

of the reduced curve C̃/Fp has numerator P (T ) = det(1−T Frob−1
p | (VℓJC)

Ip) (see [Mil08,
Corollary 11.4]). ♢

The reason we are interested in these L-functions is that conjecturally they relate
well-known arithmetic invariants of A to the value of L(A/K, s) at s = 1. This is made
explicit by the famous conjecture of Birch and Swinnerton-Dyer (BSD), a weak version
of which we will state shortly. To state BSD, we rely on the following conjecture:

Conjecture 2.35 (Hasse–Weil). L(A/K, s) has meromorphic continuation to C.

Remark 2.36. This is known to hold for elliptic curves over Q, as a consequence of the
famous modularity theorem of Wiles, Breuil, Conrad, Diamond and Taylor, as well as
for elliptic curves in some other special cases. It is also known for abelian varieties of
CM-type by a result of Shimura and Taniyama (cf. Theorem 2.54). ♢
Remark 2.37. We can be much more precise about the conjectural continuation. We
define the completed Hasse–Weil L-function

Λ(A/K, s) =

(
c(A/K)

1
2

πd·g

)s [
Γ
(s
2

)
Γ

(
s+ 1

2

)]d·g
L(A/K, s),

where d = [K : Q] and c(A/K) is the conductor of A/K. Then conjecturally Λ(A/K, s)
satisfies a precise functional equation

Λ(A/K, s) = w(A/K)Λ(A/K, 2− s), (2.3)

where w(A/K) is the root number and moreover w(A/K) = ±1 if A is principally polar-
ised, e.g. if A is the Jacobian of a curve. ♢

We make the standing assumption that L(A/K, s) has meromorphic continuation and
satisfies its functional equation. Birch and Swinnerton-Dyer predict:

Conjecture 2.38 (BSD). For an abelian variety A over a number field K with dual A∗,
the L-function L(A/K, s) admits analytic continuation to a neighbourhood of s = 1 and

1. rk(A/K) = ords=1 L(A/K, s).

2. |XA/K | is finite and

lim
s→1

L(A/K, s)

(s− 1)rk(A/K)
=

Ω(A/K) ·RA/K · (
∏

ν cν) · |XA/K |
|A(K)tors| · |A∗(K)tors|

=: BSDA/K .

Here:

� Ω(A/K) is the period of A/K, c.f. Remark 3.32 and Section 3.3 in general;
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� RA/K is the regulator of A/K, i.e. if {Pi}i and {Qj}j generate A(K)/A(K)tors and
A∗(K)/A∗(K)tors respectively, and ⟨·, ·⟩ is the height pairing, then

RA/K = (det(⟨Pi, Qj⟩))i,j;

� For each place ν of K, cν is the local Tamagawa number [Aν(Kν) : Aν
0(Kν)], where

A0
ν(Kν) is the set of points with non-singular reduction;

� XA/K is the Tate-Shafarevich group of A/K, given cohomologically as

XA/K =
⋂
ν

(
ker
(
H1(GK , A)→ H1(GKν , Aν)

))
.

Remark 2.39. Work of Kolyvagin, combined with the modularity theorem, shows that the
rank part is known to hold for elliptic curves E/Q of rank 0 or 1. The standard minimalist
conjecture says that this ought to be 100% of elliptic curves over the rationals.

Because it applies to essentially all of the elliptic curves we deal with in this project,
we should also state a famous theorem of Coates–Wiles and Arthaud: suppose K is an
imaginary quadratic field and F = Q or F/K is a finite abelian extension. If E/F is
an elliptic curve with complex multiplication by K, then L(E/F, 1) ̸= 0 =⇒ E(F ) is
finite. ♢

The BSD rank formula naturally generalises to the setting of Artin-twists.

Definition 2.40 (Artin-twist). Let ρ be a complex, continuous representation of GK .
The Artin-twist of L(A/K, s) by ρ is the L-function given by

L(A/K, ρ, s) =
∏

p ◁OK prime

Pp(p
−s)−1,

where Pp(T ) = det(1− T Frob−1
p | (ρ⊗ Vℓ)

Ip), again independent of choice of p ∤ l.

Remark 2.41. We will often abuse terminology and talk about such a ρ factoring through
Gal(F/K) as a representation of Gal(F/K). ♢

These twisted L-functions satisfy the following properties, which we refer to as the
Artin formalism.

Lemma 2.42. (i) For ρ1 and ρ2 factoring through Gal(F/K) we have

L(A/K, ρ1 ⊕ ρ2, s) = L(A/K, ρ1, s) · L(A/K, ρ2, s).

(ii) For F ′/F a finite Galois extension and ρ a representation of Gal(F ′/F ), we have

L(A/K, Ind
Gal(F ′/K)
Gal(F ′/F ) ρ, s) = L(A/F, ρ, s).

Example 2.43. In particular, taking ρ = 1 in property (ii) gives us a factorisation

L(A/F, s) =
∏
χ

L(A/K, χ, s),

where this product is over the irreducible subrepresentations of the regular representation
Ind

Gal(F/K)
1 1. When F/K is abelian, this product is just over the irreducible representa-

tions of Gal(F/K). ♢
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The Hasse–Weil conjecture extends here to predict that L(A/K, ρ, s) has meromorphic
continuation to C for all ρ. Again, we take as a standing assumption that the Hasse–Weil
conjecture holds and that L(A/K, ρ, s) satisfies a functional equation. The analogue of
the BSD rank formula is the Deligne–Gross conjecture, or ‘BSD rank formula for Artin-
twists’.

Conjecture 2.44 (Deligne–Gross). For ρ factoring through Gal(F/K) we have

ords=1 L(A/K, ρ, s) = ⟨A(F )C, ρ⟩,

where A(F )C is the representation obtained from the Galois action on A(F )⊗Z C.

Remark 2.45. We recover the original BSD rank formula (Conjecture 2.38) as a special
case of the Deligne–Gross conjecture by taking F = K. In this case Gal(F/K) is trivial,
so

⟨A(F )C, ρ⟩ = dimC(A(F )⊗Z C) = rk(A/K),

where ρ is the unique representation of the trivial group Gal(F/K). ♢

2.6 Hecke characters and L-functions

In this section we will briefly go over the definition and basic properties of algebraic Hecke
characters and their associated L-functions, mostly following [Sch88, Chapter 0]. These
Hecke L-functions will come up later as examples of L-functions associated to submotives
of abelian varieties.

There are several ways to define a Hecke character; in particular, one can do it either
in terms of fractional ideals, or using the language of idèles. Although the latter strategy
arguably leads to a more elegant definition, here we will stay closer to Hecke’s original con-
struction of what-he-called Größencharaktere, using fractional ideals. For further reading
on these different definitions, the reader may consult [Neu99] or [Shu22]. Note that while
most authors, ourselves included, use the terms ‘Größencharakter’ and ‘Hecke character’
to mean the same thing, this is not always the case. Further, there is a distinction between
Hecke characters and algebraic Hecke characters; the former is a character taking values
in C×, while the latter maps to F× for some number field F . We restrict our attention
to algebraic Hecke characters.

We start by fixing some notation for the rest of this section. Let K and F be number
fields, and fix an algebraic closure F of F (we usually take F ⊂ C). For a non-zero
integral ideal a of the ring of integers OK we denote by Ja the group of fractional ideals
of K that are coprime to a (two fractional ideals are called coprime if no prime p appears
in both their prime factorizations with non-zero exponent). Further, we assign to each
embedding σ : K ↪→ F an integer nσ, and consider the tuple

T = (nσ)σ.

We call an element a ∈ K totally positive if σ(a) > 0 for all real embeddings σ : K ↪→ R.

Definition 2.46 (Hecke character). An algebraic Hecke character χ of K with values in
F , of infinity type T and with conductor dividing a is a group homomorphism

χ : Ja → F×

such that, for any principal ideal (a) ∈ Ja generated by a totally positive a ∈ K× with
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a ≡ 1 (mod a), we have

χ((a)) = aT =
∏

σ:K↪→F

σ(a)nσ .

Given an ideal b such that a | b we can restrict χ to a character with conductor
dividing b since Jb ⊂ Ja. The conductor of χ is the smallest divisor c of a such that χ is
the restriction of a character with conductor dividing c. The infinity type T of a Hecke
character is often identified with the homomorphism χ∞ : K× → F× sending a 7→ aT .

Example 2.47. Hecke characters are a generalisation of Dirichlet characters. To see
this, let χD : (Z/NZ)× → S1 be a Dirichlet character. Further, let E denote the smallest
cyclotomic field containing the image of χD. To realise χD as a Hecke character, we take
K = Q, F = E and a = (N). There is a one-to-one correspondence between ideals b ∈ Ja

and rational numbers b ∈ Q>0 coprime (both numerator and denominator) to N , given by
taking their positive generator. Writing b = s/t for coprime integers s and t and reducing
modulo N we assign to each b an element b ∈ (Z/NZ)×. We define the corresponding
Hecke character χH : Ja → F× by taking

χH(b) = χD(b).

What is left to check is that there exists a compatible infinity type T for χH . Because
K = Q, there is only one trivial embedding σ. For b ≡ 1 (mod N) we have χD(b) = 1, so
the infinity type in this case must be T = (nσ) = (0). ♢

Hecke characters with trivial infinity type, such as Dirichlet characters, are said to be
of finite order. These are exactly the Hecke characters whose image lies in the roots of
unity in F×.

Note that the principal ideals (a) ∈ Ja with a totally positive and a ≡ 1 (mod a) form
a subgroup of finite index in Ja. For every Hecke character χ there is an integer w—called
the weight of χ—satisfying

w = nσ + nσ

for every σ : K ↪→ F ⊂ C, and independent of the chosen embedding F ↪→ C. Two
homomorphisms that agree on a finite index subgroup and map to a torsion-free group
must be equal, so we find

χ · χ = Nw
K/Q.

In fact, we have the following result (e.g. [Sch88, §0.3]).

Definition 2.48 (CM-field). A number field F is a CM-field if there exists totally real
F0 ⊂ F such that F/F0 is a degree 2 totally imaginary extension.

Proposition 2.49. Let K ′ be the maximal CM-subfield of K if it exists (cf. [Mil20,
Remark I.1.7]), or its maximal totally real subfield, otherwise.

(i) If K ′ is totally real, then every algebraic Hecke character of K is of the form

χ = µ ·Nw/2
K/Q,

where µ is a Hecke character of finite order and w ∈ 2Z.

(ii) Otherwise, if K ′ is CM, then every algebraic Hecke character of K is of the form

χ = µ · (φ ◦NK/K′),

where µ is of finite order and φ is an algebraic Hecke character of K ′.
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Definition 2.50 (Hecke L-function). For an algebraic Hecke character χ over K with
values in F and conductor dividing a, we define a Hecke L-function for every complex
embedding τ : F ↪→ C via

L(χτ , s) =
∑
b◁OK

(τ ◦ χ)(b)
N(b)s

=
∏

p◁OK

(
1− (τ ◦ χ)(p)

N(p)s

)−1

,

where this product is over the finite primes of K, and we extend χ to all ideals of OK by
setting it to 0 on ideals not coprime to a.

Hecke’s original motivation for studying Hecke characters was to find the largest pos-
sible class of L-functions that could be shown to satisfy a functional equation.

Theorem 2.51 (Hecke). Hecke L-functions have meromorphic continuation to C and
satisfy a functional equation.

2.7 Complex multiplication

We now give some background information on complex multiplication of abelian varieties.
Recall that in the case of an elliptic curve E, generically we have End(E) ∼= Z, although
it is possible that dimZ End(E) = 2. In this case End(E) is isomorphic to an order in
the ring of integers of an imaginary quadratic field F , and we say that E has complex
multiplication by OF . We explain how this concept generalises to abelian varieties of
dimension > 1, and discuss some important properties of the Hasse–Weil L-functions in
these cases. We begin with a definition:

Definition 2.52. We say that an abelian variety A has CM (or is of CM-type, or is a
CM-abelian variety)5 if End0(A) = End(A) ⊗ Q contains a commutative sub-algebra of
dimension 2 dim(A) over Q.

Recall that an abelian variety A has an isogeny decomposition

A ∼ A1 × A2 × · · · × An, (2.4)

into a product of (not-necessarily-distinct) simple abelian varieties. From the definition
of CM we obtain the following criterion.

Lemma 2.53. Let A be an abelian variety, and consider the decomposition (2.4) above.
Then A has CM if and only if each simple factor Ai has CM.

Proof. See e.g. [Mil20, Remark 3.5].

In the case that A is a simple abelian variety, A has CM if and only if there is a
CM-field F of degree 2 dim(A) over Q contained in End0(A).

The reason we will be concerned with CM-abelian varieties is that the examples we
will come to deal with in this project will be Jacobians of curves with automorphisms.
These Jacobians will have larger endomorphism rings than generic abelian varieties and
hence often the examples we deal with have CM. In particular, we will appeal to the
following theorem, due to Shimura–Taniyama and Serre–Tate.

5Typically these bracketed terms are used in the literature to distinguish CM-abelian varieties from
those which do not have CM, but do have endomorphism ring strictly larger than Z. We ignore this
potential confusion with gay abandon.
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Theorem 2.54. Let A be a simple CM-abelian variety over a number field K, with all its
endomorphisms defined over K. Then there exists an algebraic Hecke character χ taking
values in a CM-field F of degree 2 dim(A) in End0(A), such that

L(A/K, s) =
∏

τ :F ↪→C

L(χτ , s).

Remark 2.55. Together with Theorem 2.51 this implies that the Hasse–Weil conjecture
holds for A/K. ♢

We can use this theorem to obtain factorisations of L(A/K, s) even when not all the
endomorphisms of A are defined over K. We borrow the following two examples of [Mil98,
§13].

Example 2.56. Let A be a simple abelian variety over a number field K, and let K ′/K
be the smallest (Galois) extension such that all the elements of the centre of End0(A) are
defined over K ′. Then

L(A/K ′, s) = L(A/K, s)m,

where m = [K ′ : K]. ♢

Example 2.57. Let A/K be a simple CM-abelian variety such that K ′/K is the smallest
(Galois) extension such that the endomorphisms of A are defined over K ′. Take F ⊂
End0(A) a CM-field of degree 2 dim(A) over Q. Let ΣF = Hom(F,C). Then we have

L(A/K ′, s) = L(A/K, s)m =
∏
τ∈ΣF

L(χτ , s),

where m = [K ′ : K]. In this case we obtain

∏
τ∈ΣF

L(χτ , s) =

 ∏
τ∈ΣF /Gal(K′/K)

L(χτ , s)

m

,

because Gal(K ′/K) acts faithfully on F . Now taking mth roots yields

L(A/K, s) =
∏

τ∈ΣF /Gal(K′/K)

L(χτ , s),

which we can do because, for example, we know the trailing coefficients of the local
polynomials are 1. ♢
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3 Motives

The Hecke L-functions, and Hasse–Weil L-functions and their Artin twists are all examples
of a much more general class of L-function; these are the motivic L-functions. The aim of
this project is to show how one can define another type of motivic L-function associated
to curves with automorphisms, and to understand what the analogous conjectures might
be for these L-functions. In particular, the formalism set out here will give us access to a
vast conjectural edifice which might offer insight into properties of our L-functions. For
some philisophical background and some of the technical points, we refer to [Mil12].

3.1 Motives, morally

Firstly we offer a somewhat imprecise definition of ‘motives’; we give a näıve construction
which will largely be sufficient for our purposes (cf. Remark 3.26). From this point of
view, a ‘motive’ will be a pure motive over a number field K with coefficients in a number
field F , which we view only as a tuple of ‘realisation data’ consisting of vector spaces with
some additional structures and comparison isomorphisms. In particular, a K-motive M
of dimension d = dimM and weight w = w(M) with coefficients in F consists of:

1. A d-dimensional F -vector space HB(M) with Hodge filtration by free F⊗C-modules

HB(M)⊗ C =
⊕

i+j=w

H i,j(M),

equipped with an F -linear involution σ∞, defined for each real place of K, which
exchanges H i,j(M) and Hj,i(M). We view this as an action of complex conjugation.

2. A d-dimensional F -vector space HdR(M) with exhaustive decreasing filtration

{Filk HdR(M)}k∈Z.

3. For each prime λ of F , a d-dimensional Fλ-vector space Hλ(M) with a continuous
homomorphism

ρλ : GK → GL(Hλ(M)),

and, for each prime p of K coprime to λ of F , a local polynomial

Pp(M,T ;λ) = det(1− T Frob−1
p | Hλ(M)Ip) ∈ F [T ]

independent of λ. Moreover, we assert that there exists a finite exceptional set
S = S(M) of primes p of K such that ρλ(Ip) = 1 for p ̸∈ S, and that for p ̸∈ S,
fixing an embedding F ↪→ C, the complex roots of Pp(M,T ) have absolute value
N(p)−w/2.

Writing Fℓ =
∏

λ|ℓ Fλ and Hℓ = ⊕λ|ℓHλ, the data of M also includes the following
comparison isomorphisms:

1. cB,dR : HB(M)⊗QC
∼−→ HdR(M)⊗QC such that cB,dR respects the action of complex

conjugation and, for all k,

cB,dR

(⊕
i≥k

H i,j(M)

)
= Filk HdR(M).
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2. cℓ,B : Hℓ(M)
∼−→ HB(M) ⊗F Fℓ for each ℓ, such that cℓ,B respects the action of

complex conjugation.

3. cℓ,dR : (BdR ⊗Qℓ
Hℓ(M))GQℓ

∼−→ HdR(M) ⊗F Fℓ, for each ℓ, where BdR is Fontaine’s
ℓ-adic de Rham period ring.

Given motives M and N , we can obtain new motives M ⊗ N , M ⊕ N and M∗ by
taking tensor products, direct sums and duals respectively, on the level of vector spaces
in the realisation data. To abuse notation, we will denote isomorphic motives (i.e iso-
morphic on the level of realisation data with isomorphisms which respect the comparison
isomorphisms) as equal.

Definition 3.1. We say a motive M is indecomposable over K if we cannot write M =
N1 ⊕N2 for K-motives N1 and N2 of positive dimension.

To such an M and each embedding τ ∈ ΣF , we associate a motivic L-function
L(M, τ, s) via the Euler product

L(M, τ, s) =
∏
p

τ · det(1−N(p)−s Frob−1
p | Hλ(M)Ip)−1.

Remark 3.2. There is a natural notion of isomorphisms between motives, which induces
isomorphisms on the level of ℓ-adic representations and thereby equality on the level of L-
functions. We will often abuse notation and identify motives which are strictly-speaking
isomorphic, i.e. we implicitly will work with motives modulo isomorphism. ♢

Instead of varying τ , if F/Q is Galois we will often find it convenient to fix τ and let
automorphisms σ ∈ Gal(F/Q) act on L(M, s) to the same effect. We write

Lσ(M, τ, s) = L(M, τ ◦ σ, s).

Notation. We will sometimes write L(M, s) for the tuple (L(M, τ, s))τ∈ΣF
, but in certain

cases we may write L(M, s) for a choice of L(M, τ, s) when the specific embedding does
not matter.

A priori, each L-function L(M, τ, s) converges only for ℜ(s) > 1 + w(M)/2, but the
following is predicted:

Conjecture 3.3. L(M, τ, s) has meromorphic continuation and satisfies a functional
equation.

This conjectural functional equation relates the completed L-function Λ(M, s) = L∞(M, s)·
L(M, s) with Λ(M∗, 1 + w − s). The factor L∞(M, s) is determined by a Γ-factor and
conductor. The former is a product

γ(M) =
r∏

i=1

Γ

(
s+ λi

2

)
,

for some r and rational ‘shifts’ λi. The latter, c(M), should be a positive integer. Then
we have

L∞(M, s) =

(
c(M)

πr

)s/2

· γ(M).
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Remark 3.4. As in (2.3), the functional equation is of the form

Λ(M, s) = w(M)Λ(M∗, 1 + w − s),

where w(M) ∈ S1. However, in order to compute with L-functions in Magma [BCP97]—
using their adaptation of T. Dokchitser’s L-function calculator [Dok04]—one need only
specify γ(M) and c(M) (cf. Section 5). ♢

We take this conjecture as a standing assumption. We also give some examples which
will be relevant for this work:

Example 3.5. For an Artin representation (V, ρ) of GK factoring through Gal(F/K), we
obtain a motive [ρ] defined over K with coefficients in F with d([ρ]) = 1 and w([ρ]) = 0
given by the following data:

� HB([ρ]) = V , with σ∞ = ρ(c) where c ∈ Gal(K/K) is complex conjugation and

H i,j([ρ]) =

{
V ⊗ C if i = j = 0

0 else.

� HdR([ρ]) = (V ⊗Q Q)GK and

FilkHdR([ρ]) =

{
HdR([ρ]) if k ≤ 0

0 else.

� Hλ([ρ]) = V ⊗F Fλ, with GK acting on the first factor.

� cB,dR defined by the inclusion HdR([ρ]) ⊆ V ⊗Q Q.

� cℓ,B given by the factor-wise identity.

� We omit an explicit description of cℓ,dR.

The L-functions L(M, s) are the tuple (L(ρσ, s))σ∈Gal(F/K). ♢

Example 3.6. To an abelian variety A/K, we obtain a motive h1(A) of dimension dimA
and weight 2 with coefficients in Q and the following realisation data:

� HB(h
1(A)) = H1(A(C),Q) is the first singular cohomology, σ∞ is induced by com-

plex conjugation on A(C) and

H i,j(h1(A)) =


H0(A(C),Ω1

h) if (i, j) = (1, 0)

H1(A(C),Ω0
h) if (i, j) = (0, 1)

0 else,

where Ωr
h is the sheaf of holomorphic r-forms on A(C).

� HdR([ρ]) = (V ⊗Q Q)GK and

FilkHdR([ρ]) =

{
HdR([ρ]) if k ≤ 0

0 else.

� Hℓ(h
1(A)) = Hom(TℓA,Zℓ)⊗Zℓ

Qℓ, with GK acting on the first factor.
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� Comparison isomorphisms following from various classical results.

The L-function L(h1(A), s) is the usual Hasse–Weil L-function L(A/K, s). ♢

Example 3.7. The inverse Tate motive Q(1) has dimension 1, weight −2 and realisation
data:

� HB(Q(1)) = Q, σ∞ = −1,

H i,j(Q(1)) =

{
C if (i, j) = (−1,−1)
0 else.

� HdR(Q(1)) = Q and

Filk HdR(Q(1)) =

{
Q if k ≤ −1
0 else.

� Hℓ(Q(1)) = Tl(Q
×
)⊗Zℓ

Qℓ with GQ acting on the first factor by the ℓ-adic cyclotomic
character.

� cB,dR is multiplication-by-2πi.

The L-function L(Q(1), s) is the shifted Riemann zeta function ζ(s+ 1). ♢

Notation. The inverse Tate motive has an inverse Q(−1), the Tate motive. For integers
n we write Q(n) for Q(sgn(n))⊗|n|, and for motives M we write M(n) for M ⊗ Q(n), so
that L(M(n), s) = L(M, s+ n).

Let us introduce some notation before we discuss Hecke L-functions. We consider the
categoryMav

K of ‘motives coming from abelian varieties overK’, defined as the subcategory
in the category ofK-motives generated as a Tannakian category by the Artin motives over
K and the motives h1(A) of abelian varieties A/K (see [DM12, §6]). The subcategory
obtained by further requiring that A has complex multiplication is denoted by CMK .
For the subcategories of motives with coefficients in F we write Mav

K (F ) and CMK(F ),
respectively.

Example 3.8. To a Hecke character χ of K of weight w taking values in F we can
associate a motive M(χ) ∈ CMK(F ) of weight w and dimension 1, such that for every
embedding τ : F ↪→ C we have L(M(χ), τ, s) = L(χτ , s). ♢

In fact, all 1-dimensional motives coming from abelian varieties correspond to Hecke
characters in this way.

Theorem 3.9 ([Sch88, Theorem 2.6.6.1]). For every motive M ∈Mav
K (F ) of dimension

1, there exists an algebraic Hecke character χ of K with values in F such that M is
isomorphic to M(χ).

Remark 3.10. In this setting we may recast Theorem 2.54 as the statement that, if A has
complex multiplication, then there exists a Hecke character χ taking values in a CM-field
F with Galois closure F ′ and Galois group G, such that we have a decomposition

h1(A) =
⊕

σ∈G/H

M(χσ)

on the level of motives, where H = Gal(F ′/F ) and χσ = σ ◦ χ is well-defined. ♢
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3.2 Motives, technically

We now offer a more technical definition of ‘Chow’ motives.

Definition 3.11 (Algebraic cycle). Let X be a smooth projective variety over k. A
prime algebraic cycle Z of X is a closed irreducible subvariety. We write C(X) for the
free abelian group on prime algebraic cycles of X, the elements of which are algebraic
cycles.

We have a decomposition

C(X) =
dimX⊕
j=0

Cj(X),

where Cj(X) is the free abelian group on prime algebraic cycles of codimension j.

Definition 3.12 (Rational equivalence). Algebraic cycles Z and Z ′ of X are rationally
equivalent if there exists an algebraic cycle Ẑ on X × P1 with fibre Z −Z ′ over one point
of P1 and 0 over another point.

By taking equivalence classes with respect to rational equivalence we obtain quotients
Cj

rat(X), and well-defined maps

Cr
rat(X)× Cs

rat(X)→ Cr+s
rat (X)

given by the intersection product. Thereby the Chow ring Crat(X) is a Q-algebra and
moreover there is a map

cl : Crat(X)→
2 dimX⊕
i=0

H i(X),

where H i(X) is the ith singular cohomology group, which doubles degrees and sends
intersection products to cup products.

An element Z of CdimX
rat (X×Y ) can be thought of as a map on cohomology H•(X)→

H•(Y ) via the following commutative diagram

H•(X × Y ) H•(X × Y )

H•(X) H•(Y )
x 7→πY,∗(π

∗
X(x)∪cl(Z)),

π∗
X

z 7→z∪cl(Z)

πY,∗

where π• is the projection onto •. Singular cohomology is just one example of many
cohomology theories we could use here6; the key point being that we can forgo making a
choice of cohomology theory when defining morphisms in our category of motives.

Definition 3.13 (Category of effective motives). The categoryMeff(k) of effective motives
over k consists of objects h(X, e) for each smooth projective variety X over k and idem-
potent e ∈ End(hX) := CdimX

rat (X ×X)⊗Z Q. We define

Hom(h(X, e), h(Y, f)) := f ◦ (CdimX
rat (X × Y )⊗Z Q) ◦ e.

We think of the object h(X, e) as being the direct summand of some sort of ‘universal
cohomology’ hX corresponding to projection onto the image of e. We have defined our
morphisms in a clever way—as discussed above—to avoid having to say what this co-
homology should be. Lastly, to allow us to take dual motives, we invert the Tate motive.

6Indeed, we could take any Weil cohomology theory.
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Definition 3.14 (Tate motive). Let ∆X ∈ End(hX) be projection onto the diagonal. We
have

h(P1,∆P1) = h(P1, e0)⊕ h(P1, e2),

where e0 is projection onto P1×{0} and e2 is projection onto {0}× P1. We call h(P1, e2)
the Tate motive.

Remark 3.15. This notion of Tate motive aligns completely with the description of Q(−1)
given earlier. ♢

Definition 3.16 (Category of Chow motives). The categoryM(k) of Chow motives over
k is obtained by inverting the Tate motive. Formally, we view its objects as data h(X, e, n)
where X is a smooth projective variety and e ∈ End(hX) is an idempotent as before. Now
n is an integer and we define

Hom(h(X, e, n), h(Y, f,m)) := f ◦ (CdimX+m−n
rat (X × Y )⊗Z Q) ◦ g.

Remark 3.17. The moral picture here is that the motive h(X, e, n) is a twist of the effective
motive h(X, e, 0) = h(X, e); i.e. ‘h(X, e, n) = h(X, e)(n)’ in the earlier notation. ♢

We summarise some of the known properties ofM(k):

Theorem 3.18. (i) M(k) is an additive category, e.g.

h(X, e, n)⊕ h(Y, f, n) = h(X ⊔ Y, e⊕ f, n).

(ii) M(k) is a pseudo-abelian category, i.e. if M = h(X, e, n) and f ∈ End(M) then

M = h(X, e− efe, n)⊕ h(X, efe, n).

(iii) There is a tensor product structure onM(k) via

h(X, e, n)⊗ h(Y, f,m) = h(X × Y, e× f, n+m).

We would like to decompose hX according to the decomposition of H•(X), but this
is contingent in general on the following conjecture (see [Mur93, Conjectures A, B & C]):

Conjecture 3.19 (Murre). The diagonal element ∆X ∈ CdimX
rat (X ×X) has a canonical

decomposition into orthogonal idempotents

∆X = π0 ⊕ · · · ⊕ π2 dimX

such that this decomposition induces the decomposition

H•(X) = H0(X)⊕ · · · ⊕H2 dimX(X)

for any Weil cohomology theory H, under the analogous maps to cl. Moreover, this
decomposition should satisfy some further nice properties.

Remark 3.20. This conjecture (excluding in some cases the ‘further nice properties’) is
known to hold in several special cases; notably for curves, projective spaces, surfaces and
abelian varieties. Therefore, bearing in mind our aims, little of our discussion is morally
contingent on this conjecture. ♢

Assuming Conjecture 3.19, we obtain a decomposition

hX = h(X, π0)⊕ · · · ⊕ h(X, π2 dimX).
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Definition 3.21. A pure (Chow) motive is a motive of the form ehi(X)(m) := h(X, eπie,m).
To such motives we can assign a weight w = w(M) such that w(ehi(X)(m)) = i − 2m
and weights add under tensor products of motives.

Remark 3.22. We recover our näıve description of pure motives by assigning realisation
data to an effective motive M = ehi(X) via

H•(M) = eH i
•(X),

and the additional data comes for free from general results about cohomology theories of
varieties. This should help to elucidate our earlier notation. ♢

Definition 3.23. For a finite-dimensional semi-simple Q-algebra A, the categoryMA(k)
of motives over k with an action of A is the sub-category of motives with coefficients in
A.

Explicitly, the objects of MA(k) are pairs (M,φ) where M is a motive over k and
φ : A→ End(M) is a ring homomorphism. Upon decomposing AC := A⊗Q C via

AC ∼=
r∏

i=1

Mni
(C)

and letting {ei} be the relevant projections, we obtain an equivalence of categories

MA(k) ∼=
r∏

i=1

M(k)

via V 7→ (eiV )i and (Vi)i 7→
∏

i Vi ⊗ Cni—see, for example [BF01, §4]. To an object
(M,φ) ∈ MA(k) we can, under a suitable compatibility assumption (see [BF01, Conjec-
ture 3 & Remark 7]), assign an L-function L(Mφ, s) taking values in Cr. We view this as
a tuple of L-functions corresponding to the decomposition of AC.

3.3 Deligne’s period conjecture

We are interested in applying the following conjecture of Deligne to the L-functions
L(C/K, ρ, s), for which we need the following definition:

Definition 3.24 (Critical value). The integer n is a critical value for a motive M if
neither L∞(M, s) nor L∞(M∗(−w), 1− s) have a pole at s = n. We say that a motive M
is critical if 0 is a critical value for M , so that n is a critical value for M if and only if
M(n) is critical.

Example 3.25. For abelian varieties A, the motive h1(A) has m = 1 as a critical value.
Moreover, because the poles of Γ(s) are precisely at the non-positive integers, the form
of the Γ-factor in the functional Equation (2.3) implies that any submotive of h1(A) also
has m = 1 as a critical value. ♢

Remark 3.26. For many of our purposes, it is sufficient to use our loose definition of pure
motives without worrying about the more technical categorical constructions. Indeed, in
the article [Del79] in which Deligne offers the following conjecture, this loose definition is
all he deems necessary (c.f. [loc. cit., (0.12)]). ♢
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Conjecture 3.27 (Deligne’s period conjecture). Consider a motive M defined over Q
with coefficients in F and with critical value m. Let HB(M)+ be the +1-eigenspace of
σ∞, and define

α+
M : HB(M)+ ⊗ C ↪→ HB(M)⊗ C

cB,dR−−−→ HdR(M)⊗ C ↠ H+
dR(M)⊗ C,

where the last map is the natural quotient map. Denote by c+(M) ∈ (F ⊗Q C)× a
representative of the class of det(α+

M) in (F ⊗Q C)×/F×, which we view as a tuple
(c+(σ,M))σ∈ΣF

∈ (C×/F×)ΣF indexed by the embeddings of F .

(i) ords=m L(M, τ, s) is independent of τ .

(ii) There exists x ∈ F such that, for each σ ∈ ΣF ,

L(M,σ,m) = σ(x)c+(σ,M(m)).

Remark 3.28. Of course, Deligne’s conjecture relies upon the validity of analytic continu-
ation of L(M, s). We take as a standing assumption throughout this document that for all
motives M , the motivic L-function L(M, s) has meromorphic continuation and satisfies
its functional equation. ♢
Remark 3.29. Although the above conjecture is only stated over Q, for each motiveM over
a number field K there exists a motive ResKQ M over Q admitting the same L-functions
as M . This is Weil’s restriction of scalars functor; morally one replaces generators for
K/Q by formal variables subject to the relevant relations. Thereby we may write c+(M)
to mean c+(ResKQ M) is M is defined over a number field K. ♢

Example 3.30. The motive Q(n) is critical for even, positive n. Recalling Example 3.7,
the map c+(Q(n)) = (2πi)n. Thereby, Deligne’s conjecture recovers the well-known result
that

ζ(2n) ∼Q× π2n,

for n > 0. ♢

Example 3.31. As all of the motives we wish to discuss arise as summands of motives
associated to abelian varieties, we will be keenly interested in the interplay between Con-
jecture 3.27 and the BSD conjecture. The following discussion comes from [Del79, §4]:
fix an abelian variety A/Q and bases {ei}, {ωj} for H1(A(C),Z)+ ⊂ H+

B (h
1(A)) and

H+
dR(h

1(A)) respectively. The period c+(h1(A)(1)) is given (for these choices!) by

c+(h1(A)(1)) =

∫
e

ω,

where e is the Pontryagin product of the ei and ω is the exterior product of the ωj. Recall
that BSD predicts

L(h1(A)(1), 0) ∼Q

∫
A(R)
|ω| =: Ω+(A).

This is compatible with Deligne’s conjecture because we find the relation

Ω+(A) = [A(R) : A(R)◦] ·
∣∣∣∣∫

e

ω

∣∣∣∣ ,
where A(R)◦ is the connected component of the identity. ♢
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Remark 3.32. This differs from the quantity Ω(A/Q) appearing in BSDA/Q by a rational
factor; there exists a rational number aω such that

ωaω = ω0
p,

where ω0
ν is a Néron differential at the finite place ν. We then have

Ω(A/Q)

Ω+(A)
=
∏
p

|aω|p .

One notes that the product formula guarantees that the product of Ω+(A) and the above
rational factor is independent of choice of ω. For abelian varieties over general number
fields, we replace aω with a fractional ideal. ♢

Example 3.33. In [Eva21], Evans gives the following formula for the Deligne-period (as-
sociated to a fixed choice of complex embedding) of h1(A)⊗[χ] for an Artin representation
χ:

Ω(A, ρ) =
Ω+(A)

d+(ρ)Ω−(A)
d−(ρ)w(ρ)dimA√

fdimA
ρ

, (3.1)

and shows its compatibility with the BSD-conjecture. Here:

� Ω−(A) =
∣∣∫

e−
ω
∣∣, where e− is the Pontyragin product of a choice of basis {e−i } for

H−
B (h

1(A)).

� If V is a vector space over a number field realising ρ, then d±(ρ) is the dimension
of the subspace on which complex conjugation acts by ±1.

� w(ρ) is the root number appearing in the functional equation of L(ρ, s).

� fρ is the conductor of ρ. ♢

3.4 An application to ranks

Here we show how the Deligne–Gross rank formula can be deduced from the usual BSD
rank formula via Deligne’s conjecture. We will mimic this proof later on to deduce a rank
formula for a new class of L-functions.

Proposition 3.34. Conjecture 3.27 (i) and the usual BSD rank formula (Conjecture
2.38) imply the Deligne–Gross rank formula (Conjecture 2.44).

Proof. Fix an abelian varietyA/K and a finite Galois extension F/K withG = Gal(F/K).
Note that by Lemma 2.42 it suffices prove the result for irreducible representations ρ of G.
Recall from Example 2.22 that the representation A(F )C is rational, so Galois conjugate
representations occur in A(F )C with equal multiplicity by Lemma 2.24. Further note that
L(A/K, ρσ, s) = Lσ(A/K, ρ, s) for any σ ∈ Gal(KG/Q). We first consider the case that
G ∼= Cn is cyclic, inducting on the number of divisors of n. The case n = 1 is Remark
2.45.

For general n, consider a non-trivial subgroup H ≤ G. By hypothesis, any represent-
ation of G factoring as

ρ : G ↠ G/H
ρ̃−−→ C×

satisfies ords=1 L(A/K, ρ, s) = ⟨A(FH)C, ρ̃⟩, since ρ and ρ̃ define the same Artin repres-
entation. Further, the fact that ρ factors through Gal(FH/K) implies that ⟨A(F )C, ρ⟩ =
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⟨A(FH)C, ρ̃⟩, showing that ρ satisfies the Deligne–Gross rank formula. Two irreducible
representations of G are Galois conjugate if and only if they factor faithfully through the
same quotient G/H. Therefore, we have∑

ρ irrep G

⟨A(F )C, ρ⟩ =
∑

d|n, d ̸=n

ϕ(d)⟨A(F )C, ρd⟩+ ϕ(n)⟨A(F )C, ρn⟩, (3.2)

where ρd is irreducible with kernel Cn/d ≤ Cn, and ϕ denotes Euler’s totient function. On
the other hand, from Deligne’s conjecture and the induction hypothesis it follows that∑
ρ irrep G

ords=1 L(A/K, ρ, s) =
∑

d|n, d ̸=n

ϕ(d) ords=1 L(A/K, ρd, s) + ϕ(n) ords=1 L(A/K, ρn, s)

=
∑

d|n, d ̸=n

ϕ(d)⟨A(F )C, ρd⟩+ ϕ(n) ords=1 L(A/K, ρn, s). (3.3)

The left-hand sides of (3.2) and (3.3) are equal by BSD and Example 2.43, so we find

ords=1 L(A/K, ρn, s) = ⟨A(F )C, ρn⟩.

For general G, we easily reduce to the cyclic case by Artin induction and Frobenius
reciprocity; we spell out the proof here so we can skip over future applications. Artin
induction gives

ρ⊕d =
⊕

H<G cyclic

aH IndG
H ρH

for ρH a representation of H, with d and each aH integers. Hence

ords=1 L(A/K, ρ, s) =
1

d

∑
H<G cyclic

aH ords=1 L(A/F, Ind
G
H ρH , s)

=
1

d

∑
H<G cyclic

aH ords=1 L(A/F
H , ρH , s)

=
1

d

∑
H<G cyclic

aH⟨ResGH A(F )C, ρH⟩

=
1

d

∑
H<G cyclic

aH⟨A(F )C, Ind
G
H ρH⟩

= ⟨A(F )C, ρ⟩,

by the Artin formalism and Frobenius reciprocity.
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4 Curves with automorphisms

4.1 Setting the scene

We consider a smooth projective curve C defined over a finite extension K/Q, under the
action of an automorphism group G ≤ AutK(C). The L-function of C is given by

L(C/K, s) =
∏
p

det(1− Frob−1
p N(p)−s | V Ip

ℓ )−1,

where Vℓ = TℓJC⊗Zℓ
Qℓ, independent of choice of ℓ. Fixing an embeddingQℓ ↪→ C, we note

that Vℓ admits an action of G, under which Vℓ ⊗Qℓ
C decomposes as a sum of irreducible

representations of G. By choosing ℓ appropriately, we can view this as a decomposition
of Vℓ itself. Hence we obtain, for {ρi} the irreducible representations of G,

Vℓ
∼=
⊕
i

ρ⊕ri
i , (4.1)

where ri = dimHomG(ρi, Vℓ). We make an immediate observation.

Lemma 4.1. Suppose ρ is a representation of G, and that σ ∈ Gal(KG/Q). Then ρ and
ρσ occur with the same multiplicity in the decomposition (4.1).

Proof. This follows from the fact that, for any α ∈ G, the characteristic polynomial of α
acting on Vℓ is independent of ℓ (e.g. [EvdGM, Theorem 12.18 & Cor. 12.20]); indeed it
lies in Z[T ]. Hence Galois conjugate eigenvalues must appear with the same multiplicity.
If G were cyclic we would then be done. Else, suppose that ρi and ρj are Galois conjugate
representations of G. From the above, we have an isomorphism on the level of restricted
representations

ResG⟨α⟩ ρ
⊕ri
i
∼= ResG⟨α⟩ ρ

⊕rj
j ,

given by the Galois action. This holds for all α, i.e. for all cyclic subgroups of G, so the
characters of ρ⊕ri

i and ρ
⊕rj
j are conjugate and ri = rj.

Note now that the action of GK on Vℓ commutes with that of G, and hence we obtain
a factorisation

det(1− Frob−1
p N(p)−s | V Ip

ℓ ) =
∏
i

det(1− Frob−1
p N(p)−s | (ρ⊕ri

i )Ip), (4.2)

on the level of local polynomials. Taking this as inspiration, we offer the following defin-
ition which will give us an analogue of the Artin formalism.

Definition 4.2. For each representation ρ of G

L(C/K, ρ, s) =
∏
p

det(1−N(p)−s Frob−1
p | ρ)−1,

where det(f | ρ) is the determinant of the map

HomG(ρ, Vℓ)
Ip → HomG(ρ, Vℓ)

Ip

given by postcomposition with f .

Remark 4.3. We postpone the proof that these representations form a ‘compatible system’
of ℓ-adic representations to later on, see Proposition 4.16. ♢
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Remark 4.4. There is an obvious notational clash with Artin-twists, but there is no am-
biguity because it will always be clear from context whether ρ is a representation of the
group G of automorphisms, or of GK . We use this notation to stress the analogy, cf.
Remark 4.17 ♢

First, we note that these L-functions are motivic.

Proposition 4.5. The L-functions L(C/K, ρ, s) are motivic.

Remark 4.6. In light of Proposition 4.16, we can drop the dependence on [BF01, Conjec-
ture 3] for our purposes. ♢

Proof. We may view h1(JC) as a motive with coefficients in Q[G]. If ρ is one-dimensional,
then we obtain from the above a motive admitting L-function L(C/K, ρ, s) via the pro-
jection onto the ρ-part of Q[G]. For the general case, use Brauer induction.

Notation. From now on we may denote the motive admitting (for an implicit fixed choice
of embedding) the L-function L(C/K, ρ, s) by Mρ

C/K .

The construction of Definition 4.2 gives us an analogue of the Artin formalism (cf.
Remark 2.26):

Lemma 4.7. (i) For ρ1 and ρ2 representations of G,

L(C/K, ρ1 ⊕ ρ2, s) = L(C/K, ρ1, s) · L(C/K, ρ2, s).

(ii) For H ≤ G, and ρ a representation of H we have

L(C/K, IndG
H ρ, s) = L(C/K, ρ, s).

Example 4.8. Taking H to be the trivial group we recover

L(C/K, s) =
∏
ρ

L(C/K, ρ, s), (4.3)

where this product is over irreducible ρ appearing in IndG
1 1. Moreover, when G is abelian,

the factorisation (4.3) is precisely the factorisation of L-functions induced by the factor-
isation (4.2). ♢

We often find that the L-functions arising in this way are themselves Hasse–Weil
L-functions, their Artin-twists, or Hecke L-functions—or products thereof. These L-
functions have all been well-studied, and so we will often be quick to dismiss these ex-
amples as ‘uninteresting’. There is an incredibly rich theory underlying these examples,
so of course we mean only ‘have been seen before’.

Example 4.9. By Theorem 3.9, the 1-dimensional submotives of abelian varieties cor-
respond to Hecke characters. Hence, if ρ and HomG(ρ, Vℓ) are 1-dimensional, then the
L-function L(C/K, ρ, s) is a Hecke L-function. ♢

Example 4.10. Consider the case of curves C/K such that JC has CM. We saw in
Theorem 2.54 that the L-function L(C/K, s) decomposes into a product of Hecke char-
acters. Indeed, recalling Remark 3.10, it is the case that h1(JC) decomposes as a sum
of 1-dimensional Hecke motives. Each Mρ

C/K then further decomposes as a sum of Hecke

motives. In particular, each of the L-functions L(C/K, ρ, s) is a product of Hecke L-
functions. ♢
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When dealing with an abelian automorphism group, we will typically restrict our
interest to curves whose automorphisms are defined over the same field as the defining
equation, because if the automorphisms are defined over a larger field then we are often in
the situation of Example 2.56. In this case we often find that the L-functions L(C/K, ρ, s)
are just Hasse–Weil L-functions, and hence are uninteresting.

Example 4.11. Suppose C/Q admits Q-simple Jacobian, such that the cyclic group
G ∼= Cn acts on C by automorphisms with field of definition K = Q(ζn). Suppose further
that Q[G] is contained in the centre of End0(JC). It follows from Example 2.56 that
L(C/K, s) = L(C/Q, s)ϕ(n). Lemma 4.1 says that the decomposition (4.3) is trivial or we
have

L(C/K, s) =
∏

σ∈Gal(K/Q)

L(C/K, ρσ, s),

for ρ a faithful representation of G. In the latter case, because C is defined over Q, we
have that

det(1− T Frob−1
pσ | ρ) = det(1− T Frob−1

p | ρ)σ;

hence
∏

p|p det(1− T Frob−1
p | ρ) is a rational polynomial. We also have

det(1− T Frob−1
p | ρσ) = det(1− T Frob−1

p | ρ)σ,

and so it follows that the decomposition (4.3) is precisely the factorisation

L(C/K, s) = L(C/Q, s)ϕ(n)

of Example 2.56. ♢
We note that the local polynomials of the L-functions from Definition 4.2 should be

defined over a suitable cyclotomic field:

Proposition 4.12. The local polynomials det(1− T Frob−1
p | ρi) lie in KG[T ].

Proof. Write n for the exponent of G, such that KG = Q(ζn). Certainly the coefficients
of each local polynomial lie in Qℓ for each ℓ such that KG ⊂ Qℓ, and moreover the local
polynomials are independent of choice of ℓ. Hence they lie in the intersection⋂

ℓ∈L

(Qℓ ∩Q), (4.4)

where L = {ℓ prime | KG ⊂ Qℓ}. It suffices to prove the claim that this intersection is
KG. Equivalently, we may take L to be the set

{ℓ prime | l ≡ 1 (mod n)},

which has density 1/[KG : Q] = 1/ϕ(n) in the primes by Dirichlet’s theorem on primes
in arithmetic progressions. Suppose that F/KG were a number field contained in the
intersection (4.4), with q(X) ∈ Z[X] the absolute minimal polynomial of a primitive
element for F/Q. By Frobenius’ density theorem (e.g. [SL96]7), the proportion of primes ℓ
for which q(X) splits mod ℓ is then 1/|Gal(q)|, which is certainly smaller than 1/[KG : Q].
In particular, there exists ℓ ∈ L such that F ̸⊂ Qℓ. The claim follows.

Remark 4.13. Typically, we will consider affine patches of planar curves with automorph-
isms of the form (x, y) 7→ (ζnx, ζmy) and C will be defined over K = KG, so that these
local polynomials are defined over K. ♢

7This is also an excellent historical account of both Chebotarëv’s and Frobenius’ density theorems.
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Proposition 4.14. For all σ ∈ Gal(KG/Q) we have

L(C/K, ρσ, s) = Lσ(C/K, ρ, s).

We first give an example to demonstrate the strategy of proof:

Example 4.15. Consider the curve C : y3 = x4 + x+ ζ3, with an action of C3 given by
y 7→ ζ3y. Under this action we obtain a decomposition

Vℓ
∼= ρ⊕3 ⊕ ρ⊕3

(cf. Section 5.2), where α acts on ρ by ζ3.

Compute #Fix(α◦Φj) on C̃(Fp), where Φ is the N(p)-power Frobenius, for j = 1, 2, 3.
This yields the traces

∑
i αiγ

j
i , where the αi are the eigenvalues of α, the γi are those of

Frobp, and the αiγ
j
i are the eigenvalues of α ◦ Frobj

p. We obtain the trace of Frobj
p on

HomG(ρ, Vℓ)
Ip ∼= ρ⊕3 as ∑

i αiγ
j
i − ζ3

∑
i γ

j
i

ζ3 − ζ3
,

so in this way we can obtain the characteristic polynomial of Frobp on HomG(ρ, Vℓ)
Ip , e.g.

via Newton’s identities [Mea92]. Taking conjugates shows that∑
i αiγ

j
i − ζ3

∑
i γ

j
i

ζ3 − ζ3
= Tr(Frobj

p | ρ⊕3) = Tr(Frobj
p | ρ⊕3),

and it follows that the eigenvalues of Frobp on HomG(ρ, Vℓ)
Ip are the conjugates of those

on HomG(ρ, Vℓ)
Ip . ♢

Proof of Proposition 4.14. First we treat the case that G = ⟨α⟩ ∼= Cn is cyclic. Choose
ℓ ≡ 1 (mod n) and let A be the diagonal matrix by which α acts on Vℓ with entries
z1, . . . , zd. Also fix a prime p and let Φ be the diagonal matrix of Frobp on Vℓ with
respect to the same basis. Recall that since G is abelian, ρ is 1-dimensional and therefore
HomG(ρ, Vℓ)

Ip is isomorphic to V ρ
ℓ = ρ⊕rρ in the decomposition (4.1). We demonstrate

how one can compute the L-function corresponding to ρ, where α acts on V ρ
ℓ by eigenvalue

z = z1.
Let p(X) of degree d be the minimal polynomial of A, and set pz(X) = p(X)/(X− z).

Consider the matrix Φpz(A), which acts on V ρ′

ℓ as the zero map for ρ′ ̸= ρ, and has trace
Tr(Frobp | V ρ

ℓ )
∏

i ̸=1(z−zi). Repeating for Φj for j ∈ {2, . . . , g}, we can in this way obtain
the minimal polynomial of Frobp acting on V ρ

ℓ using Newton’s identities; hence the local
factor of L(C/K, ρ, s) at p.

We now ask what happens when we apply σ ∈ Gal(Q(ζn)/Q) to this construction.
Note that expanding pz(A) gives

Tr(Frobj
p | V

ρ
ℓ ) =

∑d−1
k=0 ek(z2, . . . , zd) Tr(Φ

jAd−1−k)∏
i ̸=1(z − zi)

,

where the ek denote the elementary symmetric polynomials. By the Lefschetz trace for-
mula (Theorem 2.19), Tr(ΦjAd−1−k) ∈ Z is integral and therefore fixed by σ. Hence we
obtain Tr(Frobj

p | V
ρ
ℓ )

σ = Tr(Frobj
p | V

ρσ

ℓ ). Therefore the local polynomial at p satisfies

det(1−N(p)−s Frob−1
p | ρσ) = det(1−N(p)−s Frob−1

p | ρ)σ.

This holds for all p. For the general case, use Artin induction and Lemma 4.7.
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Indeed, the proof of this proposition actually leads to an important compatibility
result which says that the L-functions L(C/K, ρ, s) are well-defined.

Proposition 4.16. The local polynomials

det(1− T Frob−1
p | HomG(ρ, VℓJC)

Ip)

are independent of choice of ℓ. In particular, the L-functions L(C/K, ρ, s) are well-
defined.

Proof. We obtain from the proof of Proposition 4.14, for one-dimensional ρ,

Tr(Frobj
p | V

ρ
ℓ ) =

∑d−1
k=0 ek(z2, . . . , zd) Tr(Φ

jAd−1−k)∏
i ̸=1(z − zi)

.

Using the Lefschetz trace formula, the traces on the right-hand-side can be computed via
point counts on curves over finite fields, which are independent of ℓ. We again conclude
by Artin induction.

4.2 An analogous rank formula

We now give some discussion on quotient curves and the analogy between the L-functions
which we define and Artin-twists.

Remark 4.17. Consider, for example, the following S3-diagram of number fields

L = Q(ζ3,
3
√
2)

K = Q( 3
√
2)

F = Q(ζ3)

Q

from which we obtain an identity

L(C/Q, s)2L(C/L, s) = L(C/F, s)L(C/K, s)2

via the Artin-formalism for Artin-twists, for any curve C/Q. By choosing such a curve
and taking function fields over each of the above fields, we could view the above diagram
as a Galois diagram of function fields.

Indeed, recall that a curve C/K corresponds to its function field K(C), cf. [Sta18,
0BXX, Theorem 53.2.6]. If the curve admits an action by automorphisms defined over K
of the finite group G, then the fixed field under H ≤ G is a subfield8, which corresponds
to a quotient curve CH such that h1(JCH ) ≤ h1(JC).

Once we permit function field extensions which are not just extensions of the field
of constants, then, we recover the L-functions of Definition 4.2 as a ‘generalisation’ of
Artin-twists. ♢

8Indeed, K(C)/K(C)H is a Galois extension with Galois group H, validating the opening poem.
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Given a curve C/K with an action by automorhpisms ofK, we note that G also acts on
JC(K), from which we obtain a representation χC/K = JC(K)⊗C. We are then interested
in the following question, which is a potential analogue of the BSD rank formula for Artin-
twists. Recalling our standing assumption that motivic L-functions have meromorphic
continuation and satisfy their functional equations, we ask:

Question 4.18. Do we have

ords=1 L(C/K, ρi, s) = ⟨χC/K , ρi⟩?

We recall from Example 3.25 that m = 1 is a critical value for the underlying motive
Mρ

C/K which admits the L-function L(C/K, ρ, s). Then it is natural to ask whether we
can deduce Question 4.18 from Deligne’s conjecture and the BSD rank formula, as in
Proposition 3.34. We first give a brief remark on quotient curves and the analogy with
Artin-twists, which we will use to replicate the proof of Proposition 3.34 in this setting.

Then we have:

Theorem 4.19. Conjecture 3.27 (i) and the BSD rank formula imply an affirmative
answer to Question 4.18.

Proof. Mimic precisely the proof of Proposition 3.34: for G trivial we just apply the BSD
rank formula to JC(K). For G ∼= Cn, we consider the curve CH for each subgroup H. In

this case, for ρ : G ↠ G/H
ρ̃−→ C× we have

L(CH/K, ρ̃, s) = L(C/K, ρ, s),

and ⟨χCH/K , ρ̃⟩ = ⟨χC/K , ρ⟩. The rest of the proof then follows as before, using Lemmas
4.1 and 4.7 and Proposition 4.14.

With this proposition under our belt, there is sufficient theoretic evidence to state:

Conjecture 4.20. The answer to Question 4.18 is always in the affirmative.

Remark 4.21. A conjecture of Deligne–Beilinson predicts that

ords=0 L(M, s) = dimH1
f (M

∗(1))− dimH0
f (M

∗(1)),

for critical motives M , where here H•
f (M) denotes a certain motivic cohomology. It is

well-known that for an abelian variety A over a number field K we have

H i
f (h

1(A)(1)) =

{
A(K)⊗Z Q, if i = 1

0, if i = 0.

It is clear that the BSD rank formula follows from this conjecture, which is essentially
the rank part of the eTNC ([BF01, Conjecture 4]); hence Conjecture 4.20 is an easy
consequence of the eTNC. Of course, this is already known because BSD and Deligne’s
period conjecture are both implied by the eTNC; indeed Theorem 4.19 is significantly
stronger than this observation. It may still be of use, however, to view the L-functions
L(C/K, ρ, s) through the lens of the eTNC. ♢

Hence we may view numerical evidence in favour of Conjecture 4.20 as evidence in
favour of Deligne’s conjecture and BSD.
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Remark 4.22. We give a short discussion on the relative scarcity of ‘interesting’ examples
in the non-abelian case. Firstly, consider the K-isogeny decomposition of JC into simple
abelian varieties over K:

φ : JC → A1 × · · · × An.

This corresponds to a decomposition

h1(JC) = h1(A1)⊕ · · · ⊕ h1(An)

on the level of motives; hence the decomposition (4.3) induces a decomposition of each
h1(Ai). This decomposition comes from the action of the subgroup Gφ = {α ∈ G :
α(kerφ) = kerφ}, each element of which induces an automorphism of the product A1 ×
· · · × An. The action of Gφ may permute these isogeny factors and this permutation
does not induce a further decomposition of the h1(Ai), so the ‘interesting part’ of the
decomposition comes from the action of Gφ/H on h1(JCH ) ≤ h1(JC), where H ◁ Gφ

is the normal subgroup which acts by permutations. The quotient Gφ/H may well be
abelian. To guarantee that this doesn’t happen, we could restrict to looking at curves
with simple Jacobian—but then we should require that G = Gφ be simple: else for normal
H ◁ G we have CH ∈ {P1

K , C}, by simplicity. If CH = P1
K , then we may restrict to the

action of G/H, which need not be non-abelian. Thereby we should have a large group
of automorphisms; the smallest non-abelian simple group is A5. This forces End

0(JC) to
contain many roots of unity, so JC is highly likely to have CM by some abelian CM-field
and hence be uninteresting.

Moreover, one can see on the LMFDB ([LMF23]) that the known curve of smallest
genus with an action of A5 by automorphisms which does not decompose as a product of
elliptic curves has genus 6. This turns out to be too large for meaningful computation. ♢

4.3 Twisted pieces of curves

Recall that Conjecture 4.20 is an analogue of the BSD rank formula for Artin-twists
(Conjecture 2.44). Here, we briefly discuss some special cases where Conjecture 4.20
aligns with Conjecture 2.44. In the notation of the previous, this occurs when our L-
functions L(C/K, ρ, s) happen to be Artin-twists of other curves. In the following, ρ will
denote a representation of G, whilst χ denotes an Artin representation.

Firstly, for χ factoring through a finite Galois extension F/K, we obtain

L(C/F, s) =
∏
χ

L(C/K, χ, s)

from the Artin formalism, where this product is over χ appearing in Ind
Gal(F/K)
1 1. On

the level of F -motives this is an equality

h1(JC)F =
⊕
χ

(h1(JC)K ⊗ [χ]).

Combining with the decomposition coming from (4.3), we have

Mρ
C/F =

⊕
χ

(Mρ
C/K ⊗ [χ]) (4.5)

for each representation ρ of G. This observation can help us to ‘compute’ Mρ
C/K in cases

where we have an isomorphism from C to a better-understood curve C0 over a larger field:
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Example 4.23. Consider the elliptic curve E : y2 = x3 + b over K = Q(ζ3). Then E
has an action of C3 via α : x 7→ ζ3x; hence E has complex multiplication by Z[ζ3] and we
have a factorisation into Hecke L-functions

L(E/K, s) = L(ξ, s) · L(ξ, s).

Moreover, we also have a factorisation coming from the decomposition of VℓE under the
action of C3

L(E/K, s) = L(E/K, ρ, s) · L(E/K, ρ, s).

By Example 4.10, these L-function decompositions correspond. In the case that b ∈ Q we
have L(ξ, s) = L(ξ, s) = L(E/Q, s), as in Example 4.11. We can also explicitly compute
these Hecke L-functions, for example, for b ∈ ζ3 · Z. Indeed, if E : y2 = x3 + ζ3c and
E0 : y2 = x3 + c for c ∈ Z we find

L(E/K, ρ, s) = L(E0/Q, χ, s),

where χ : Gal(Q(ζ9)/Q) → C× is an Artin representation. To see this, we rewrite E :
y2 = ζ23x

3 + c, write E : y2 = ζ3x
3 + c, and consider the decompositions under ⟨α⟩

VℓE ∼= ρE ⊕ ρE, VℓE ∼= ρE ⊕ ρE, VℓE0
∼= ρ0 ⊕ ρ0

so that α acts on ρE, ρE, and ρ0 by the same eigenvalue. Over Q(ζ9) it is clear that these
curves are isomorphic. Moreover we note that σασ = α : (x, y) 7→ (ζ3 · x, y), where σ is
complex conjugation, so

P ∈ ρE =⇒ P ∈ ρE.

It suffices to obtain the eigenvalues of Frobp on ρE and ρE in terms of that on ρ0. Let
f : E0 → E be induced by the isomorphism of curves (x, y) 7→ (ζ−1

9 x, y). Then we have,
for P ∈ ρE, on the level of ℓn-torsion,

Frobp f((x, y)) = Frobp(ζ
−1
9 x, y)

= (ζ
−N(p)
9 Frobp x,Frobp y)

= (χ(Frobp) · ζ−1
9 Frobp x,Frobp y)

= χ(Frobp) · f(Frobp(x, y)),

so the eigenvalue of Frobp on ρE is exactly χ(Frobp) ·γ, where γ is the eigenvalue of Frobp

on ρ0. This shows our claim. ♢

Remark 4.24. We can also re-run the previous example from a motivic point of view, which
allows us to avoid using the explicit isomorphism from E to E0. As K = Q(ζ3)-motives,
we have

h1(E) = Mρ
E/K ⊕Mρ

E/K and h1(E0) = Mρ
0 ⊕Mρ

0 ,

for M•
0 = M•

E0/K
. Hence we obtain, via the Artin formalism and the F -isomorphism from

E to E0, ⊕
χ

(Mρ
E/K ⊗ [χ]) =

⊕
χ

(Mρ
0 ⊗ [χ]),

where we have summand-wise equality because both sides correspond to the decomposition
of h1(E)F into Hecke motives. In particular, by Example 4.11, there exists χ such that
Mρ

E/K = h1(E0)Q ⊗ [χ]. This implies the desired equality on the level of L-functions. ♢
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Following this same argument we can obtain the following:

Lemma 4.25. Suppose C/K is a curve with an action of the abelian group G by auto-
morphisms, and that D/K is another curve such that C is isogenous to D over a finite
Galois extension F/K. Suppose further that the action of G on D/F is already defined
on the level of D/K. For each representation ρ of G, if Mρ

C/K is indecomposable over K,

then there exists an Artin representation χρ factoring through Gal(F/K) such that

Mρ
C/K = Mρ

D/K ⊗ [χρ].

Proof. From Equation (4.5), we have

Mρ
D/F =

⊕
χ

(Mρ
D/K ⊗ [χ]) and Mρ

C/F =
⊕
χ

(Mρ
C/K ⊗ [χ]).

The conclusion follows by noting that Mρ
C/F = Mρ

D/F ; indeed, we can take the identifica-
tion ⊕

χ

(Mρ
D/K ⊗ [χ]) =

⊕
χ

(Mρ
C/K ⊗ [χ])

to be summand-wise by comparing dimensions—and because of the assumption on in-
decomposability.

In particular, we may apply Lemma 4.25 in cases such as Example 4.23:

Proposition 4.26. Let K = Q(ζn), and suppose that C/K is a curve with an action of
the abelian group G ∼= Cn by automorphisms, and that D/Q is another curve admitting
Q-simple Jacobian such that C is isogenous to D over a finite Galois extension F/K.
Suppose further that the action of G on D/F is already defined on the level of D/K, and
that Q[G] is contained in the centre of End0(JD). For each representation ρ of G, if Mρ

C/K

is indecomposable over K, then there exists an Artin representation χρ factoring through
Gal(F/Q) such that

Mρ
C/K = h1(JD)Q ⊗ [χρ],

i.e.
L(C/K, ρ, s) = L(D/Q, χρ, s).

Proof. By Example 4.11 we have Mρ
D/K = h1(JD)Q, and Lemma 4.25 gives the res-

ult—noting that χρ of the lemma can be viewed as a representation of Gal(F/Q).

Remark 4.27. We do not expect that the above proposition is in its most general form,
but state it this way for the sake of simplicity. ♢

4.4 Periods of pieces

Here we give some discussion on the problem of finding a recipe analagous to Example
3.33 for the L-functions L(C/K, ρ, s). Firstly, we note that—although we were able to
draw on the analogy with Artin-twists to understand ranks—this analogy falters when
we try to understand leading terms; for example, we have no clear analogue of the root
number w(ρ) appearing in (3.1). We do already know explicit formulae for these periods
in some special cases, however.

Example 4.28. Suppose C/Q is a curve such that the finite group G ∼= Cn acts by
automorphisms defined over some larger field K, that the quotient curve CG is a copy of
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P1, and that Q[G] lies in the centre of End0(JC). Then the factorisation under the action
of G is

L(C/K, s) = L(C/Q, s)φ(n),

i.e. if ρ is a primitive character of G, then

L(C/K, ρ, s) = L(C/Q, s)

and we may take c+(Mρ
C/K(1)) = Ω+(JC). ♢

The following example, however, reminds us that it remains important to keep Ex-
ample 3.33 in mind, c.f. Proposition 4.26.

Example 4.29. Let C/K be a curve over a number field with an action of a finite group
G by automorphisms. Suppose D/Q is another curve with Q-simple Jacobian such that
C is isomorphic to D over some finite extension F/K which is Galois over Q, that the
action of G on D is already defined on the level of K, and that Q[G] lies in the centre
of End0(JD). Then, for a representation ρ of G, there exists an Artin representation χ
factoring through Gal(F/Q) such that

Mρ
C/K = h1(JD)Q ⊗ [χ].

Thereby we may take, fixing a choice of embedding τ ,

c+(τ,Mρ
C/K(1)) = Ω(JD, χ). ♢

Remark 4.30. Coming up with an analogous (conjectural) explicit formula to (3.1) for
the periods of the motives Mρ

C/K is an active area of thought. This naturally begs the
question

“What do we mean by ‘explicit’ here?”

Of course, in some sense the formulation of Conjecture 3.27 gives an ‘explicit’ description
of the period. We would like to have a description in terms of quantities which we can
easily compute numerically, such as the periods associated to JC and data associated to
ρ. The former is not necessarily easy to compute, but Example 3.33 shows that we need
at least to permit this. We lastly note that we do not necessarily conjecture that such a
formula exists! ♢

4.5 Elliptic & hyperelliptic curves

First we recall the possible automorphisms of an elliptic curve.

Lemma 4.31. Let E be an elliptic curve over a number field K. As a curve, the auto-
morphism group of E is isomorphic to one of

Z/2Z,Z/4Z,Z/6Z.

Proof. We can take E to be in short Weierstrass form, i.e.

E : y2 = x3 + ax+ b.

The K-isomorphisms of curves in this form are given by x 7→ u2x, y 7→ u3y for u ∈ K×

(e.g. [Sil09, Table 3.1]), with image

y2 = x3 + u4 · ax+ u6 · b
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so the possibilites are u = ±1, or a = 0 and u3 = 1, or b = 0 and u4 = 1.

Remark 4.32. A geometric point of view of this result is given by the complex structure
of an elliptic curve. Indeed, automorphisms of a complex torus are induced by scalar
multiplication that preserves the defining lattice. Assuming the lattice to be in the stand-
ard form Z ⊕ Zτ , it is easy to see that the only possible cases are multiplication by -1
and multiplication by i when the fundamental domain is a square, or by e2πi/3 when the
fundamental domain is composed of two equilateral triangles. ♢

The automorphism of order two in each of these possible cases corresponds to the
inversion P 7→ −P , which acts by −1 on the whole Tate module. Then the potentially
interesting cases occur when we have an automorphism of order 3 or 4, i.e. when the elliptic
curve E has complex multiplication by Q(ζ3) or Q(i). By Example 4.10, any non-trivial
decomposition of VℓE under the action of AutK C corresponds to the decomposition of
h1(E) into 1-dimensional Hecke motives.

Elliptic curves are then uninteresting from our point of view, so we turn to the next
natural case to consider: hyperelliptic curves. In [MP21], Müller and Pink classify all
hyperelliptic curves with many9 automorphisms (see [loc. cit., Table 1]). They find three
infinite families, all of which have CM, and 15 more curves, 10 of which do not have CM.
These 10 curves without CM (more precisely, their twists) are then potentially interesting
to us. With the help of the LMFDB [LMF23], we make some notes on these curves, using
the same labelling of curves as in the referenced table. We exclude the curves X16, X17

and X18 of genera 20, 24 and 30 respectively—both because these genera are too large for
meaningful computations with and because the LMFDB does not support curves of genus
greater than 15 (of course, these reasons are not disjoint). Following the LMFDB, in the
table below E stands in for an elliptic curve and An for an abelian variety of dimension
n. We also note that these isogeny factors are not necessarily simple.

C g(C) Aut(C) Decomposition under isogeny
X6 3 C2 × S4 E × E × E
X8 6 GL2(F3) E2 × E4

X10 9 W2 E × A2 × A3
2

X11 12 W3 A4 × A2
4

X12 5 C2 × A5 E5

X13 9 C2 × A5 E4 × E5

X15 15 C2 × A5 E4 × E5 × A3
2

Table 1: Non-CM hyperelliptic curves with many automorphisms.

We give some examples which show how one can make observations as in the above
table.

Example 4.33. Consider the case of the genus 3 curve given by affine equation

X6 : y2 = x8 + 14x4 + 1.

We note that y2 = x4±14x2+1 are affine equations of suitable quotients. The two elliptic
curves represented by these equations therefore appear in the isogeny decomposition ofX6,
but now counting dimensions shows that X6 must have three simple isogeny factors—all
of which are elliptic curves. Note that these isogenies are defined over Q(i), which is the

9This has a precise technical meaning, see [MP21, §2].
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field of definition of the automorphisms of X6, and so we consider this curve uninteresting
as it boils down to studying elliptic curves. Likewise we will not be interested in twists
of this curve. ♢

We are similarly uninterested in the curves X8, X12 and X13. We are however po-
tentially interested in the curves X10, X11 and X15, or more precisely their twists with
coefficients in the fields of definition of the relevant automorphism groups. Sadly, even
genus 9 is currently beyond our computational ceiling (cf. Section 5).

We also show demonstrate a method to construct curves over Q with automorphisms
defined over Q, with an example which yields a hyperelliptic curve.

Example 4.34. Consider the map α : (x, y) 7→ (x+ xy, y + xy). We construct a genus 2
(hence hyperelliptic) curve by asserting that this defines an automorphism of order 3 on
our curve. To do so we compute α3(x, y) = (x+A(x, y), y +A(x, y)), and take our curve
to be defined by C : A∗(x, y) = 0. where A∗(x, y) is the polynomial A/xy. We find

C : x3y3+2x3y2+2x2y3+x3y+xy3+6x2y2+5x2y+5xy2+x2+y2+7xy+3x+3y+3 = 0.

We can take a hyperelliptic model of C to have affine equation

y2 + (x3 + x+ 1)y = −x5 + 2x4 − 3x3 + x2 − x,

on which the automorphism β : (x : y : z) 7→ (z : x3− 2x2z+3xz2+ y− z3 : x− z), acting
on C via its action on the weighted projective space P1,3,1

Q , has order 3. Under the action
of C3

∼= ⟨β⟩, we obtain a decomposition of the Tate module

VℓJC ∼= ρ⊕2 ⊕ ρ⊕2,

where ρ affords one of the two non-trivial irreducible characters of C3. This curve turns
out to be isogenous to the square of an elliptic curve over a cubic extension. We find that
the local polynomials of L(C/Q, ρ, s) correspond to local polynomials of an Artin-twist
of this elliptic curve, via Proposition 4.26. ♢

Remark 4.35. One can see on the LMFDB10 that there are several known examples of
genus 2 curves over Q with automorphism group C3, but in each case we obtain a square
of an elliptic curves over a cubic extension; hence these curves are uninteresting by Pro-
position 4.26. ♢

Lastly, we note that in Example 4.34 we relied on the fact that C was a genus 2 curve
in order to find a suitable embedding in weighted projective space. In examples of higher
genus, it is often far-from-clear how one might find a smooth embedding into projective
space in this way. Notably, this can make the computations in the sequel more difficult.

10https://www.lmfdb.org/HigherGenus/C/Aut/
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5 Computations

5.1 Computational strategies

Here we discuss how we may compute the Euler factors of the L-functions of Definition
4.2. We consider the scene as described in Section 4.1, using the same notation. Further,
for any prime p of good reduction we identify Fp with FN(p), and we consider the reduced

curve C̃/Fp. Computing the local polynomial at p of L(C/K, ρ, s) boils down to computing
the characteristic polynomial of Frobp on HomG(ρ, Vℓ)

Ip . For cyclic groups G = ⟨α⟩, our
strategy is summarised in the following algorithm. Throughout, all of our computations
are implemented in Magma [BCP97].

Algorithm 5.1 (G cyclic).
Input: An irreducible representation ρ of G, and a prime p of good reduction.
Output: The local polynomial of L(C/K, ρ, s) at p.

1. Determine the eigenvalue δ of α on HomG(ρ, Vℓ)
Ip . There is only one since G is

cyclic, and it occurs with multiplicity dimHomG(ρ, Vℓ)
Ip .

2. Compute the eigenvalues {γi} of Frobp on V
Ip
ℓ .

3. Using the output of the previous steps, compute the eigenvalues of Frobp on HomG(ρ, Vℓ)
Ip .

This is spelled out in the proof of Proposition 4.14.

4. From these eigenvalues construct the characteristic polynomial of Frob−1
p on HomG(ρ, Vℓ)

Ip ,
giving the local polynomial at p of L(C/K, ρ, s).

Step 1. Although we mention the first step, in practice it is not necessary. Because G
is cyclic, every eigenvalue of α corresponds uniquely to an irreducible representation ρ
of G. We often choose ρ as correspondig to the piece on which α acts with a specified
eigenvalue.

Step 2. The näıve approach would be to compute the eigenvalues of Frobp on V
Ip
ℓ by

counting points on C̃(FN(p)j) for j ∈ {1, . . . , g}, cf. Example 2.18 and Remark 5.2 be-
low. However, much faster algorithms have been implemented in Magma to compute
these: Kedlaya’s algorithm has been implemented by Harrison ([Har12]) for hyperel-
liptic curves; another version of Kedlaya’s algorithm ([Har07]) has been implemented by
Minzlaff ([Min13]) for superelliptic curves; and an algorithm has been implemented by
Tuitman ([Tui16], [Tui17]) for more general curves.

Step 3. Following the proof of Proposition 4.14, we may proceed as follows: set fj,k =
αj ◦ Frobk

p and compute #Fix(fj,k) for k ∈ {1, . . . , g} and j ∈ {1, . . . , d− 1} in the nota-
tion of the proposition (cf. Example 5.3), giving Tr(fi,j) via the Lefschetz trace formula.
Thereby, we can compute the local polynomial directly as in the proposition. However,
in practice, once we have computed #Fix(f1,1) we run through the possible combinations
of the eigenvalues {δi} of α and {γi} of Frobp to find all which give

∑
δiγi = #Fix(f1,1).

If there is more than one possibility, then we iterate over j and k until there is a unique
possibility. If there is a unique arrangement, then the γi which pair with δ are the eigen-
values we are looking for. We note that, based on our experience, it seems rare to require
even to compute #Fix(f1,2).
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Remark 5.2. A priori, to compute the eigenvalues of an endomorphism f on Vℓ one should
compute the traces Tr(f i) for i ∈ {1, . . . , 2g}, and then apply Newton’s identities. How-
ever, knowing the traces just for i ∈ {1, . . . , g}, we can compute the eigenvalues γi of f
using the Weil conjectures. Using the Riemann hypothesis, we obtain the polynomial with
roots {γi}i by setting S = Q[t, s1, . . . , s2g] and computing the image of the polynomial∏

i(t−si) in the quotient of S by the relations given by asserting that
∑

i s
n
i =

∑
i γ

n
i and

s2i−1s2i = q. The latter relations are valid because real roots occur with even multiplicity.
We may then solve for the roots of this polynomial. ♢

We note that often counting the fixed points of endomorphisms f can be reduced to
counting points on an auxilliary curve over Fp:

Example 5.3. Consider the curve C : y3 = h(x) defined over K = Q(ζ3), with auto-

morphism α : (x, y) 7→ (x, ζ3y). Fixing a prime p of K, we consider the reduction C̃
over Fp = Fq of C and let Φ be the q-power Frobenius. Note that α descends to an

automorphism of C̃, and set f = α ◦ Φ. Then the trace of α ◦ Frobp on VℓJC is given by

1 + q −#D(Fq),

where D : uy3 = h̃(x) is an auxilliary curve and u generates F×
q , cf. Example 5.6. ♢

Remark 5.4. It may not always be possible to find such an auxilliary curve. Indeed, in the
case of Example 4.34 we have an automorphism α of order 3 defined over the rationals by
x 7→ x+xy, y 7→ y+xy. We have thus far been unable to find a suitable auxilliary curve,
so instead to count fixed points we must resort to a Gröbner basis calculation in Magma.
This quickly becomes computationally inefficient for even medium-sized primes. ♢
Remark 5.5. The computations outlined above are only for cyclic groups G, but Algorithm
5.1 can also be used to extract information in the non-cyclic case. For example, one could
go through the steps for several cyclic subgroups of G and piece together that information
to obtain the correct local polynomial. ♢

The computations described so far allow us to compute the local polynomials of
L(C/K, ρ, s). Our aim is to test whether there is an affirmative answer to Question
4.18 for C/K, so we must discuss how to compute L(C/K, ρ, 1) once we have computed
the local factors: in order to compute this value, we need to know the functional equation
for L(C/K, ρ, s). To do this, Magma requires the Γ-factor and conductor. The former we
can easily guess because it divides the Γ-factor (Γ(s/2)Γ((s + 1)/2))dg appearing in the
functional Equation (2.3) for L(C/K, s). For the conductor, we have the relation∏

ρ

c(Mρ
C/K) = c(JC/K),

where this product is over ρ appearing in IndG
1 1, from which it is often straightforward

to deduce c(Mρ
C/K), e.g. using Proposition 4.14. The major difficulty, then, is that it is

not known that the conductor of C/K can be computed efficiently for curves of genus
greater than 2. Often then, we must resort to guessing the functional equation by trying
different values of the conductor and testing whether CFENew returns a small value when
applied to our L-functions.
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5.2 Picard Curves

We have discussed the cases of curves of genus 1 and 2, so the natural next case to consider
is the genus 3 family of so-called Picard curves. These are smooth plane curves over a
number field K given by equations of the form

y3 = f(x),

where f(x) is a quartic polynomial in x. If Q(ζ3) ⊆ K, then these curves admit an
automorphism of order 3 given by α : y 7→ ζ3 · y. Indeed, these curves correspond
to degree 3 Galois extensions K(C)/K(x). We consider such a curve C defined over
K = Q(ζ3) (and not over Q, cf. Example 4.11), so for a choice of ℓ ≡ 1 (mod 3) we obtain
a decomposition under the action of C3 = ⟨α⟩

VℓJC ∼= ρ⊕3 ⊕ ρ⊕3,

where again ρ affords one of the non-trivial irreducible characters of C3. Note that the
trivial character does not appear in this decomposition because the fixed field of α is
K(x), which corresponds to a copy of P1

K , which has genus 0. We obtain a corresponding
factorisation of L(C/K, s) into conjugate L-functions:

L(C, s) = L(C, ρ, s) · L(C, ρ, s).

We can see how Proposition 3.34 works very explicitly in this case: Deligne’s conjecture
says that

ords=1 L(C, ρ, s) = ords=1 L(C, ρ, s).

Because the K-rational points JC(K) cannot be fixed by complex conjugation, we have
JC(K)⊗ C ∼= ρ⊕r ⊕ ρ⊕r as representations of AutK(C). BSD predicts that

rk(JC(K)) = ords=1 L(C/K, s) = 2r,

and 2 ords=1 L(C/K, ρ, s) = ords=1 L(C/K, s), i.e. that ords=1 L(C/K, ρ, s) = rk(JC(K))/2 =
r. We aim to use Magma to verify this (at least as a proof of concept) by computing
ords=1 L(C/K, ρ, s), although, if one believes BSD, this is perhaps not so interesting be-
cause it is essentially equivalent to computing ords=1 L(C/K, s). Therefore we are much
more interested in the L-value L(C/K, ρ, 1) when the order of vanishing is 0, in the hope
of computing a Deligne-period.

To accurately compute with these L-functions in Magma, we would need to compute
thousands of Euler factors, which would require computing power to which we do not
presently have access11.

Example 5.6. Consider the curve

C : y3 = x4 − x3 − ζ3x
2 − ζ3x.

We compute the Euler factor at the prime p = (5)◁OK of L(C/K, ρ, s), where α : y 7→ ζ3y
acts on HomG(ρ, Vℓ) by ζ3: firstly, the local polynomial of L(C/K, s) at p is

15625T 6 + 3750T 5 − 450T 4 − 245T 3 − 18T 2 + 6T + 1.

Now we wish to count the fixed points of α ◦ Φ, where Φ is the Frobenius x 7→ x25 on

11Access pending!
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Fp = F25. The fixed points of this endomorphism on the reduction of C satisfy

(x, y) = (x25, zy25),

where z is the reduction of ζ3 mod p. Hence, we find that such points correspond to points
on the ‘auxilliary’ curve given by

D : uy3 = x4 − x3 − zx2 − zx

over Fp, where u is the cube of a root of X24 − z−1. We find that there are 26 points on
this curve; hence the trace of α ◦ Frobp on Vℓ is 1 + 25− 26 = 0. We then find that there
is a unique arrangement as in Step 3 of the algorithm and that

125ζ3T
3 + 10(ζ3 − 1)T 2 − 2(ζ3 − 1)T + 1

is the local polynomial we desire. ♢
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6 Future steps

On the computational side of things, we have thus far—largely for bureaucratic and prac-
tical reasons—only been able to carry out a very limited number of numerical computa-
tions. As such, we would very much like to carry out more computations in ‘interesting’
settings. Hence, the problem of identifying interesting examples of curves with auto-
morphisms and computing the relevant L-functions is certainly an avenue of potential
future work. This is intimately linked to explicit geometric class field theory and its
non-abelian analogues.

Recalling that Conjecture 4.20 was formulated as an analogue of the BSD rank formula
for Artin-twists, we note that V. Dokchitser, Evans andWiersema ([DEW21]) have studied
potential analogues of BSD for Artin-twists. Hence, it is a natural next step to see if one
can replicate their results in this new setting. In particular, one may seek to replicate
the computations of this project in order to study the behaviour at s = 1 of the relevant
L-functions beyond just the order of vanishing.

It is a future aim to come up with an explicit description of the periods associated to
our L-functions, analagous to Example 3.33.

We also note that a potential integral refinement of Deligne’s period conjecture for
Jacobians of curves has been proposed in [ECW23], which is further relevant to the L-
functions considered here.

BSD and other conjectures on special values of L-functions have been absorbed into
a conjectural edifice largely governed by the equivariant Tamagawa Number Conjecture
of Bloch–Kato and Burns–Flach. From this point of view, Burns and Macias Castillo
([BC19]) have studied the problems considered in [DEW21]. It is then natural to wonder
whether one could mimic this work in our setting.

Lastly, we note that little of what we have done is specific to the case of Jacobians of
curves, so one could easily extend many of the above results to the case of general abelian
varieties.
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