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Introduction

Consider the elliptic curve

E/F13 : y2 = x3 + x + 1.

We find that #E(F13) = 18.

What about #E(F132)? We count 180 points, but we also make a
curious observation.

Notice that E(F13) = Fix(E(F13) → E(F13), (x , y) 7→ (x13, y13))
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Consider the elliptic curve

E/F13 : y2 = x3 + x + 1.

We find that #E(F13) = 18.

What about #E(F132)? We count 180 points, but we also make a
curious observation.

Notice that E(F13) = Fix(Φ)

, and that the ‘characteristic polynomial’
is

T 2 − (1 + 13 − 18)T + 13 = (T − (2 + 3i))(T − (2 − 3i)).

We have
1 + 132 − (2 + 3i)2 − (2 − 3i)2 = 180.

This is the Weil conjectures in action.
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Zeta functions of curves

Given a curve C/Fq , consider the zeta function

Z (C;T ) := exp

∑
n≥1

#C(Fqn)
T n

n

 .

Theorem (Weil)

Z (C;T ) =
(1 − T )(1 − qT )

Harry Spencer (UCL) Motivic pieces of curves 6/9/23 2 / 9



Zeta functions of curves

Given a curve C/Fq , consider the zeta function

Z (C;T ) := exp

∑
n≥1

#C(Fqn)
T n

n

 .

Theorem (Weil)

Z (C;T ) =
(1 − T )(1 − qT )

Harry Spencer (UCL) Motivic pieces of curves 6/9/23 2 / 9



Zeta functions of curves

Given a curve C/Fq , consider the zeta function

Z (C;T ) := exp

∑
n≥1

#C(Fqn)
T n

n

 .

Theorem (Weil)

Z (C;T ) =
(1 − T )(1 − qT )

Harry Spencer (UCL) Motivic pieces of curves 6/9/23 2 / 9



Zeta functions of curves

Given a curve C/Fq , consider the zeta function

Z (C;T ) := exp

∑
n≥1

#C(Fqn)
T n

n

 .

Theorem (Weil)

Z (C;T ) =
char. poly. of Φ
(1 − T )(1 − qT )

Harry Spencer (UCL) Motivic pieces of curves 6/9/23 2 / 9



Zeta functions of curves

Given a curve C/Fq , consider the zeta function

Z (C;T ) := exp

∑
n≥1

#C(Fqn)
T n

n

 .

Theorem (Weil)

Z (C;T ) =
Φ char.poly.of
(1 − T )(1 − qT )

i.e. #C(Fqn) = 1 + qn − Tr(Φn).

Theorem (Lefschetz trace formula)

#Fix(α) =
2∑

k=0

(−1)k Tr(α∗ | Hk (C,Qℓ))
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Curves with automorphisms

Suppose now that C/Fq has an action of the finite group G by
automorphisms.

This induces an action of G on ℓ-adic cohomology. For ρ a
representation of G, we can take the ‘ρ-piece’ of the ℓ-adic
cohomology.

We’ll do this for H1, which is the ‘interesting’ part of the
cohomology of a curve.
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An example

Consider the genus 3 curve C/F25 : y3 = x4 − x3 − zx2 − zx

, where
z2 + z + 1 = 0.

The characteristic polynomial of Φ is

T 6 + 6T 5 − 18T 4 − 245T 3 − 450T 2 + 3750T + 15625.

G = ⟨α⟩ ∼= C3 acts via α : y 7→ zy .

We find that H1 = ρ⊕3 ⊕ ρ⊕3, and the action of G commutes with Φ
so we can decompose into these two pieces.

Let’s look at the piece on which α acts by z; say this is the ρ-piece.
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Example, cont.

Let’s compute #Fix(α ◦ Φ).

These fixed points correspond to points on C such that
(x , y) = (x25, zy25), so we can count points on the auxiliary curve

D : (uy)3 = x4 − x3 − zx2 − zx ,

where u24 = z−1. We count #D(F25) = #Fix(α ◦ Φ) = 26 and so
Tr(α ◦ Φ) = 0.

We want to match up the eigenvalues αi and γi of α and Φ,
respectively, such that

∑
i αiγi = 0.

We find that the characteristic polynomial of Φ acting on the
ρ-piece is:

T 3 − 2(ζ3 − 1)T 2 + 10(ζ3 − 1)T + 125ζ3.
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What did we just compute?

A motive is a ‘piece’ of the cohomology of a variety.

We equipped the endomorphism algebra of the motive h1(C) with
a Q[G]-module structure and projected onto the ρ-piece.

The ℓ-adic cohomology H1(M) of the motive we want is

HomG(ρ,H1(C)),

and we computed the trace (hence characteristic polynomial) of Φ
acting on here.
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L-functions

Consider the curve

E/Q : y2 = x3 + x + 1.

After reducing modulo 13, we computed a zeta function. Doing this
for all primes, we could compute∏

p

Z (Ep;p−s) =
ζ(s)ζ(s − 1)

L(E , s)
.

Conjecture (BSD)
ords=1 L(E , s) = rk(E).

This ‘L-function’ is determined by the Galois action on H1(E).

In this way, we associate to each motive M an L-function L(M, s).
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L-functions

Consider
C/Q(ζ3) : y3 = x4 − x3 − ζ3x2 − ζ3x .

There’s a factorisation

L(C, s) = L(C, ρ, s) · L(C, ρ, s).

Earlier we showed how to compute L(C, ρ, s). All of that works in
general.

Theorem
Analytic continuation, BSD, Galois equivariance of ranks (Deligne) imply

ords=1 L(C, ρ, s) = ⟨Jac(C)Q(ζ3), ρ⟩.
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Closing remarks: Artin-twists and motivation

Let K/Q be Galois with Galois group G and C/Q a curve.

For ξ ∈ Rep(G), the Artin-twisted L-function L(C, ξ, s) is associated
to the ℓ-adic system H1(C)⊗ ξ. We have a factorisation

L(CK , s) =
∏

ξ∈Irrep(G)

L(C, ξ, s)

(with some multiplicities).

We can think of this decomposition as coming from the Galois
extension K (C)/Q(C).

The L-functions discussed before arise in this way when we allow
Galois extensions of function fields not coming from extensions of
the field of constants.
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Thanks for listening!


	Introduction
	Background results
	Set-up
	A computation
	What just happened?
	Closing remarks

