Constructing families of 3-Selmer companions

Harry Spencer

4 March 2025

Harr	v 5	nen	Cer
	, -	PCII	~~.

メロト メタト メヨト メヨト

Selmer companion curves

Definition (Mazur-Rubin)

Two elliptic curves E_1, E_2 over a number field K are *n*-Selmer companions if for all quadratic characters χ of K:

 $\mathsf{Sel}_n(E_1^\chi) \cong \mathsf{Sel}_n(E_2^\chi).$

イロト イ団ト イヨト イヨト

Selmer companion curves

Definition (Mazur-Rubin)

Two elliptic curves E_1, E_2 over a number field K are *n*-Selmer companions if for all quadratic characters χ of K:

 $\operatorname{Sel}_n(E_1^{\chi}) \cong \operatorname{Sel}_n(E_2^{\chi}).$

Mazur and Rubin give a set of sufficient conditions for a pair of elliptic curves to be *p*-Selmer companions.

イロト イ団ト イヨト イヨト

イロン 不通 とくほど 不良とう

Let E be an elliptic curve over a local field of mixed characteristic with potentially multiplicative reduction.

< □ > < □ > < □ > < □ > < □ >

Let E be an elliptic curve over a local field of mixed characteristic with potentially multiplicative reduction.

There exists $q \in K^{\times}$ with positive valuation and an isomorphism

$$\tau_{E/K}: \bar{K}^{\times}/q^{\mathbb{Z}} \to E(\bar{K}).$$

< □ > < □ > < □ > < □ > < □ >

Let E be an elliptic curve over a local field of mixed characteristic with potentially multiplicative reduction.

There exists $q \in K^{\times}$ with positive valuation and an isomorphism

$$\tau_{E/K}: \bar{K}^{\times}/q^{\mathbb{Z}} \to E(\bar{K}).$$

Definition

The canonical *p*-torsion subgroup is $C_{E/K}[p] = \tau_{E/K}(\mu_p)$.

	_				
- D 10 10 1		-	00	~~	
			- 11		

< □ > < □ > < □ > < □ > < □ >

Let E be an elliptic curve over a local field of mixed characteristic with potentially multiplicative reduction.

There exists $q \in K^{\times}$ with positive valuation and an isomorphism

$$\tau_{E/K}: \bar{K}^{\times}/q^{\mathbb{Z}} \to E(\bar{K}).$$

Definition

The canonical *p*-torsion subgroup is $C_{E/K}[p] = \tau_{E/K}(\mu_p)$.

These are the p-torsion points of good reduction.

		~		
- Ha	FF1/	Sn	en.	cor
110	H I Y	$-\mu$	<u> </u>	CCI

3/8

< □ > < □ > < □ > < □ > < □ >

Theorem (Mazur-Rubin)

Let E_1 and E_2 be elliptic curves over a number field k, and write S_i for the set of primes of potentially multiplicative reduction of E_i . Suppose p > 3 and:

<ロト < 回 > < 回 > < 回 > < 回 >

Theorem (Mazur-Rubin)

Let E_1 and E_2 be elliptic curves over a number field k, and write S_i for the set of primes of potentially multiplicative reduction of E_i . Suppose p > 3 and:

• there is a G_k -isomorphism $\alpha: E_1[p] \xrightarrow{\sim} E_2[p];$

<ロト < 回 > < 回 > < 回 > < 回 >

Theorem (Mazur-Rubin)

Let E_1 and E_2 be elliptic curves over a number field k, and write S_i for the set of primes of potentially multiplicative reduction of E_i . Suppose p > 3 and:

• there is a G_k -isomorphism $\alpha: E_1[p] \xrightarrow{\sim} E_2[p];$

•
$$S_1 = S_2;$$

<ロト < 回 > < 回 > < 回 > < 回 >

Theorem (Mazur-Rubin)

Let E_1 and E_2 be elliptic curves over a number field k, and write S_i for the set of primes of potentially multiplicative reduction of E_i . Suppose p > 3 and:

• there is a G_k -isomorphism $\alpha: E_1[p] \xrightarrow{\sim} E_2[p];$

•
$$S_1 = S_2;$$

• for every \mathfrak{p} above $p, \mathfrak{p} \in S_1 = S_2$;

イロト イ団ト イヨト イヨト

Theorem (Mazur-Rubin)

Let E_1 and E_2 be elliptic curves over a number field k, and write S_i for the set of primes of potentially multiplicative reduction of E_i . Suppose p > 3 and:

• there is a G_k -isomorphism $\alpha: E_1[p] \xrightarrow{\sim} E_2[p];$

•
$$S_1 = S_2$$

- for every \mathfrak{p} above $p, \mathfrak{p} \in S_1 = S_2$;
- for every $q \in S_1 = S_2$, we have $\alpha(\mathcal{C}_{E_1/k_q}[p]) = \mathcal{C}_{E_2/k_q}[p]$.

イロト イ団ト イヨト イヨト

Theorem (Mazur-Rubin)

Let E_1 and E_2 be elliptic curves over a number field k, and write S_i for the set of primes of potentially multiplicative reduction of E_i . Suppose p > 3 and:

• there is a G_k -isomorphism $\alpha: E_1[p] \xrightarrow{\sim} E_2[p];$

•
$$S_1 = S_2;$$

- for every \mathfrak{p} above $p, \mathfrak{p} \in S_1 = S_2$;
- for every $q \in S_1 = S_2$, we have $\alpha(\mathcal{C}_{E_1/k_q}[p]) = \mathcal{C}_{E_2/k_q}[p]$.

Then E_1 and E_2 are *p*-Selmer companions over every finite extension of k.

イロト イ団ト イヨト イヨト

Theorem (Mazur-Rubin)

Let E_1 and E_2 be elliptic curves over a number field k, and write S_i for the set of primes of potentially multiplicative reduction of E_i . Suppose p > 3 and:

• there is a G_k -isomorphism $\alpha: E_1[p] \xrightarrow{\sim} E_2[p];$

•
$$S_1 = S_2;$$

- for every \mathfrak{p} above $p, \mathfrak{p} \in S_1 = S_2$;
- for every $q \in S_1 = S_2$, we have $\alpha(\mathcal{C}_{E_1/k_q}[p]) = \mathcal{C}_{E_2/k_q}[p]$.

Then E_1 and E_2 are p-Selmer companions over every finite extension of k.

Example

The curves

$$y^2 = x^3 + x^2 - 4x - 12$$

and

$$y^2 = x^3 - 28561x + 1856465$$

are 5-Selmer companions over every number field.

Theorem (Mazur–Rubin)

Let E_1 and E_2 be elliptic curves over a number field k, and write S_i for the set of primes of potentially multiplicative reduction of E_i . Suppose the following:

• there is a G_k -isomorphism $\alpha: E_1[3] \xrightarrow{\sim} E_2[3];$

•
$$S_1 = S_2;$$

- for every \mathfrak{p} above 3, $\mathfrak{p} \in S_1 = S_2$;
- for every $q \in S_1 = S_2$, we have $\alpha(\mathcal{C}_{E_1/k_q}[3]) = \mathcal{C}_{E_2/k_q}[3]$;
- neither E_1 nor E_2 has any prime of additive reduction with Kodaira type one of II, II*, IV, IV*.

Then E_1 and E_2 are 3-Selmer companions over every finite extension of k.

A family of companions

Theorem

For $t \in \mathbb{Z}$, $t \neq 0, 1$, the curves

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

are non-isogenous 3-Selmer companions over every number field.

< □ > < □ > < □ > < □ > < □ >

A family of companions

Theorem

For $t \in \mathbb{Z}$, $t \neq 0, 1$, the curves

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

are non-isogenous 3-Selmer companions over every number field.

Proof.

	-		
Harr		ne	-07
'I I GI I I	v 🗆		

< □ > < □ > < □ > < □ > < □ >

A family of companions

Theorem

For $t \in \mathbb{Z}$, $t \neq 0, 1$, the curves

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

are non-isogenous 3-Selmer companions over every number field.

Proof.

We check all the conditions of Mazur and Rubin's theorem, then we check for isogenies.

	_		
 - D 10 10 1		001	000
alli	/ 3	Der	ICEI.

< □ > < □ > < □ > < □ > < □ >

$$\begin{split} E_t: & y^2 &= x^3 + x^2 + 3x + 3(8t+1), \\ D_t: & y^2 &= x^3 + (25 - 81(8t+1))x^2 - 512x \end{split}$$

2

イロト イヨト イヨト イヨト

$$\begin{array}{rcl} E_t: & y^2 & = & x^3+x^2+3x+3(8t+1), \\ D_t: & y^2 & = & x^3+(25-81(8t+1))x^2-512x \end{array}$$

(3-torsion isomorphism)

イロト イヨト イヨト イヨト

$$\begin{split} E_t: & y^2 &= x^3 + x^2 + 3x + 3(8t+1), \\ D_t: & y^2 &= x^3 + (25 - 81(8t+1))x^2 - 512x \end{split}$$

(3-torsion isomorphism) D_t is the Hessian curve associated to E_t ;

<ロ> <四> <ヨ> <ヨ>

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

(3-torsion isomorphism) D_t is the Hessian curve associated to E_t; they intersect precisely at inflection points and hence have isomorphic 3-torsion.

< □ > < □ > < □ > < □ > < □ >

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

(3-torsion isomorphism) D_t is the Hessian curve associated to E_t; they intersect precisely at inflection points and hence have isomorphic 3-torsion.
 (S₁ = S₂)

イロト イヨト イヨト イヨト

$$\begin{array}{rcl} E_t: & y^2 & = & x^3+x^2+3x+3(8t+1), \\ D_t: & y^2 & = & x^3+(25-81(8t+1))x^2-512x \end{array}$$

(3-torsion isomorphism) D_t is the Hessian curve associated to E_t; they intersect precisely at inflection points and hence have isomorphic 3-torsion.
 (S₁ = S₂)

Lemma

- If E_t has potentially multiplicative reduction at p > 3, then so does D_t .
- **②** If E_t has multiplicative reduction at p > 3, then so does D_t . Moreover, in this case, E_t has split multiplicative reduction if and only if D_t does also.

	_			
- D 10 10 1		-		
alli	/ 3		II.C.	- 11

6/8

イロト イ団ト イヨト イヨト

$$\begin{array}{rcl} E_t: & y^2 & = & x^3+x^2+3x+3(8t+1), \\ D_t: & y^2 & = & x^3+(25-81(8t+1))x^2-512x \end{array}$$

(3-torsion isomorphism) D_t is the Hessian curve associated to E_t; they intersect precisely at inflection points and hence have isomorphic 3-torsion.
 (S₁ = S₂)

Lemma

- If E_t has potentially multiplicative reduction at p > 3, then so does D_t .
- **②** If E_t has multiplicative reduction at p > 3, then so does D_t . Moreover, in this case, E_t has split multiplicative reduction if and only if D_t does also.

Proof.

Write everything out explicitly.

ante everything out explic	Litty.			
	4	ロットを望ったが、	1	DOC.
Harry Spencer	3-Selmer companions	4/3/25		6/8

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

(3-torsion isomorphism) Dt is the Hessian curve associated to Et; they intersect precisely at inflection points and hence have isomorphic 3-torsion.
(S1 = S2) From the lemma (mostly).
(3 ∈ S1 = S2)

イロト イヨト イヨト イヨト

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

- (3-torsion isomorphism) D_t is the Hessian curve associated to E_t; they intersect precisely at inflection points and hence have isomorphic 3-torsion.
 (S₁ = S₂) From the lemma (mostly).
- (3 $\in S_1 = S_2$) We read off that they both have multiplicative reduction at 3.

イロト イヨト イヨト イヨト

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

(3-torsion isomorphism) D_t is the Hessian curve associated to E_t; they
intersect precisely at inflection points and hence have isomorphic 3-torsion.

2
$$(S_1 = S_2)$$
 From the lemma (mostly).

- **(** $3 \in S_1 = S_2$ **)** We read off that they both have multiplicative reduction at 3.
- (Canonical subgroups)

< □ > < □ > < □ > < □ > < □ >

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

- (3-torsion isomorphism) D_t is the Hessian curve associated to E_t; they intersect precisely at inflection points and hence have isomorphic 3-torsion.
- **2** $(S_1 = S_2)$ From the lemma (mostly).
- **(** $3 \in S_1 = S_2$ **)** We read off that they both have multiplicative reduction at 3.
- (Canonical subgroups) This also follows from one!

イロト イ団ト イヨト イヨト

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

- (3-torsion isomorphism) D_t is the Hessian curve associated to E_t; they intersect precisely at inflection points and hence have isomorphic 3-torsion.
- **2** $(S_1 = S_2)$ From the lemma (mostly).
- **(** $3 \in S_1 = S_2$ **)** We read off that they both have multiplicative reduction at 3.
- (Canonical subgroups) This also follows from one!
- (Kodaira types)

イロト イ団ト イヨト イヨト

$$E_t: y^2 = x^3 + x^2 + 3x + 3(8t+1),$$

$$D_t: y^2 = x^3 + (25 - 81(8t+1))x^2 - 512x$$

(3-torsion isomorphism) D_t is the Hessian curve associated to E_t; they intersect precisely at inflection points and hence have isomorphic 3-torsion.

2
$$(S_1 = S_2)$$
 From the lemma (mostly).

- **(** $3 \in S_1 = S_2$ **)** We read off that they both have multiplicative reduction at 3.
- (Canonical subgroups) This also follows from one!
- **(**Kodaira types) It turns out we only have to check at p = 2, so apply Tate's algorithm.

6/8

イロト イヨト イヨト イヨト

It remains to check that E_t, D_t are non-isogenous.

2

イロト イヨト イヨト イヨト

It remains to check that E_t, D_t are non-isogenous.

Write $Y_0(N)$ for the (non-compact) modular curve defined by the N^{th} classical modular polynomial, Φ_N .

< □ > < □ > < □ > < □ > < □ >

It remains to check that E_t, D_t are non-isogenous.

Write $Y_0(N)$ for the (non-compact) modular curve defined by the $N^{\rm th}$ classical modular polynomial, Φ_N .

Theorem (Kenku–Mazur)

 $Y_0(N)(\mathbb{Q}) = \emptyset$, unless either $N \le 19$ or $N \in \{21, 25, 27, 37, 43, 67, 163\}$.

< □ > < □ > < □ > < □ > < □ >

It remains to check that E_t, D_t are non-isogenous.

Write $Y_0(N)$ for the (non-compact) modular curve defined by the N^{th} classical modular polynomial, Φ_N .

Theorem (Kenku–Mazur)

 $Y_0(N)(\mathbb{Q}) = \emptyset$, unless either $N \le 19$ or $N \in \{21, 25, 27, 37, 43, 67, 163\}$.

Recall that there is a degree N cyclic isogeny between two elliptic curves E and D over $\overline{\mathbb{Q}}$ if and only if $\Phi_N(j(E), j(D)) = 0$ or, equivalently, $(j(E), j(D)) \in Y_0(N)(\overline{\mathbb{Q}}).$

イロト イヨト イヨト イヨト

 E_t , D_t are non-isogenous for $t \neq 0, 1$.

	_		
- DEFE		 200	0.0
Idili	/ 3		

 E_t , D_t are non-isogenous for $t \neq 0, 1$.

Proof.

 Δ_{E_t} and Δ_{D_t} differ by a non-square independent of t.

	~		
Harry	~ ~	nor	CAR
l lall'	ັ່	Der	ICEI

< □ > < □ > < □ > < □ > < □ >

 E_t , D_t are non-isogenous for $t \neq 0, 1$.

Proof.

 Δ_{E_t} and Δ_{D_t} differ by a non-square independent of t. Therefore we only have to check for isogenies of even degrees appearing in the previous theorem.

イロト イヨト イヨト イヨト

 E_t , D_t are non-isogenous for $t \neq 0, 1$.

Proof.

 Δ_{E_t} and Δ_{D_t} differ by a non-square independent of t. Therefore we only have to check for isogenies of even degrees appearing in the previous theorem.

The finitely many polynomials to check are stored in Magma, except Φ_{18}

<ロト < 回 > < 回 > < 回 > < 回 >

 E_t , D_t are non-isogenous for $t \neq 0, 1$.

Proof.

 Δ_{E_t} and Δ_{D_t} differ by a non-square independent of t. Therefore we only have to check for isogenies of even degrees appearing in the previous theorem.

The finitely many polynomials to check are stored in Magma, except Φ_{18} which is on Drew Sutherland's website.

<ロト < 回 > < 回 > < 回 > < 回 >

 E_t , D_t are non-isogenous for $t \neq 0, 1$.

Proof.

 Δ_{E_t} and Δ_{D_t} differ by a non-square independent of t. Therefore we only have to check for isogenies of even degrees appearing in the previous theorem.

The finitely many polynomials to check are stored in Magma, except Φ_{18} which is on Drew Sutherland's website.

For each N, we can solve for the rational zeroes of the numberator of $\Phi_N(j(E_t),j(D_t)).$

<ロト < 回 > < 回 > < 回 > < 回 >