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Introduction

Selmer companion curves

Definition (Mazur–Rubin)
Two elliptic curves E1, E2 over a number field K are n-Selmer companions if for
all quadratic characters χ of K:

Seln(Eχ
1 )

∼= Seln(Eχ
2 ).

Mazur and Rubin give a set of sufficient conditions for a pair of elliptic curves to
be p-Selmer companions.
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Introduction

Tate parameterisation

Let E be an elliptic curve over a local field of mixed characteristic with potentially
multiplicative reduction.

There exists q ∈ K× with positive valuation and an isomorphism

τE/K : K̄×/qZ → E(K̄).

Definition
The canonical p-torsion subgroup is CE/K [p] = τE/K(µp).

These are the p-torsion points of good reduction.
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Introduction

Sufficient conditions

Theorem (Mazur–Rubin)
Let E1 and E2 be elliptic curves over a number field k, and write Si for the set of
primes of potentially multiplicative reduction of Ei. Suppose p > 3 and:

there is a Gk-isomorphism α : E1[p]
∼−→ E2[p];

S1 = S2;
for every p above p, p ∈ S1 = S2;
for every q ∈ S1 = S2, we have α(CE1/kq

[p]) = CE2/kq
[p].

Then E1 and E2 are p-Selmer companions over every finite extension of k.

Example
The curves

y2 = x3 + x2 − 4x− 12

and
y2 = x3 − 28561x+ 1856465

are 5-Selmer companions over every number field.
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Introduction

Sufficient conditions

Theorem (Mazur–Rubin)
Let E1 and E2 be elliptic curves over a number field k, and write Si for the set of
primes of potentially multiplicative reduction of Ei. Suppose the following:

there is a Gk-isomorphism α : E1[3]
∼−→ E2[3];

S1 = S2;
for every p above 3, p ∈ S1 = S2;
for every q ∈ S1 = S2, we have α(CE1/kq

[3]) = CE2/kq
[3];

neither E1 nor E2 has any prime of additive reduction with Kodaira type one
of II, II*, IV, IV*.

Then E1 and E2 are 3-Selmer companions over every finite extension of k.
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Constructing Selmer companions

A family of companions

Theorem
For t ∈ Z, t ̸= 0, 1, the curves

Et : y2 = x3 + x2 + 3x+ 3(8t+ 1),

Dt : y2 = x3 + (25− 81(8t+ 1))x2 − 512x

are non-isogenous 3-Selmer companions over every number field.

Proof.
We check all the conditions of Mazur and Rubin’s theorem, then we check for
isogenies.
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Constructing Selmer companions

Conditions:

Et : y2 = x3 + x2 + 3x+ 3(8t+ 1),

Dt : y2 = x3 + (25− 81(8t+ 1))x2 − 512x

1 (3-torsion isomorphism) Dt is the Hessian curve associated to Et; they
intersect precisely at inflection points and hence have isomorphic 3-torsion.

2 (S1 = S2)

Lemma
1 If Et has potentially multiplicative reduction at p > 3, then so does Dt.
2 If Et has multiplicative reduction at p > 3, then so does Dt. Moreover, in

this case, Et has split multiplicative reduction if and only if Dt does also.

Proof.
Write everything out explicitly.
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Constructing Selmer companions

Conditions:

Et : y2 = x3 + x2 + 3x+ 3(8t+ 1),

Dt : y2 = x3 + (25− 81(8t+ 1))x2 − 512x

1 (3-torsion isomorphism) Dt is the Hessian curve associated to Et; they
intersect precisely at inflection points and hence have isomorphic 3-torsion.

2 (S1 = S2) From the lemma (mostly).
3 (3 ∈ S1 = S2)

We read off that they both have multiplicative reduction at 3.
4 (Canonical subgroups) This also follows from one!
5 (Kodaira types) It turns out we only have to check at p = 2, so apply Tate’s

algorithm.
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3 (3 ∈ S1 = S2) We read off that they both have multiplicative reduction at 3.
4 (Canonical subgroups)

This also follows from one!
5 (Kodaira types) It turns out we only have to check at p = 2, so apply Tate’s

algorithm.
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Non-isogenous

Modular polynomials

It remains to check that Et, Dt are non-isogenous.

Write Y0(N) for the (non-compact) modular curve defined by the N th classical
modular polynomial, ΦN .

Theorem (Kenku–Mazur)
Y0(N)(Q) = ∅, unless either N ≤ 19 or N ∈ {21, 25, 27, 37, 43, 67, 163}.

Recall that there is a degree N cyclic isogeny between two elliptic curves E and D
over Q̄ if and only if ΦN (j(E), j(D)) = 0 or, equivalently,
(j(E), j(D)) ∈ Y0(N)(Q̄).
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Non-isogenous

Proposition
Et, Dt are non-isogenous for t ̸= 0, 1.

Proof.
∆Et

and ∆Dt
differ by a non-square independent of t. Therefore we only have to

check for isogenies of even degrees appearing in the previous theorem.

The finitely many polynomials to check are stored in Magma, except Φ18 which is
on Drew Sutherland’s website.

For each N , we can solve for the rational zeroes of the numberator of
ΦN (j(Et), j(Dt)).
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