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Conductors

Conductors

The conductor is a representation-theoretic invariant attached to a curve over (for
simplicity) Q. We will denote the conductor of C/Q by nC , and write

nC =
∏

bad p

pnC,p

where nC,p is the local conductor exponent at p, an invariant of C/Qp.

We further write
nC,p = nC,p,tame + nC,p,wild.

We will be interested in computing the wild conductor exponent nC,p,wild.

Remark
The tame conductor exponent, nC,p,tame, can be computed from a regular model
of C/Qp.
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Conductors

Wild conductor exponents

Definition

nC,p,wild =

∫ ∞

0

codim(JC [ℓ]
Gu

)du,

where G = Gal(Qp(JC [ℓ])/Qp).

Note that nC,p,wild = 0 if p > 2g(C) + 1.

We can provably (and practically) compute nC,p,wild in the following cases:
C an elliptic curve.
C hyperelliptic, p > 2 or genus at most 3.
C superelliptic, p prime to exponent.
C non-hyperelliptic of genus 3, 4 or 5, p > 2.
C plane quartic with a rational point.

Today: C : f(x, y) = 0 smooth away from infinity with degx f ∈ {3, 4}, p > 3.
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Trigonal curves

The degree 3 case

Fix a curve C : f(x, y) = 0 with degx f = 3

and assume that f has Galois group
S3 when viewed as a polynomial over Q̄(y).

Q(y, x,∆) = Q(B)

Q(y, x) = Q(C)

Q(y,∆) = Q(D)

Q(y)

2

3

2
3

Where ∆2 = discxf(x, y). Note that the genus of D is at most g(C) + 1, and
that this bound is sharp when the cover C → P1 is simply ramified.
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Trigonal curves

A map on 3-torsion
Write τ for a generator of Gal(Q(y, x,∆)/Q(y,∆)).

B

C : f(x, y) = 0

D : ∆2 = discxf(x, y)

P1
y

πC

πD

Theorem
The map π∗

C − τ ◦ π∗
C : JC [3] → JB [3] is surjective (or injective) onto π∗

D(JD[3]).
Moreover, π∗

D is injective on JD[3] unless B → D is unramified, in which case the
kernel is 〈P 〉 for some P ∈ JD[3].
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Trigonal curves

Back to conductors

Corollary
If g(D) ≥ g(C)− 1, then nC,p,wild = nD,p,wild for p > 3.

Proof.
If g(D) = g(C), then JC [3] ∼= JD[3]. Otherwise one is an index 9 subspace of the
other, say JC [3] ∼= JD[3]⊕ T . Now T is too small to contribute to wild the
conductor exponent at p > 3.

Theorem (Dokchitser2–Maistret–Morgan)
The wild conductor exponent at p 6= 2 of the hyperelliptic curve H/Q : s2 = g(t),
with g square-free, is

nH,p,wild =
∑

r∈R/GQp

vp(∆Qp(r)/Qp
)− [Qp(r) : Qp] + fQp(r)/Qp

,

where R is the set of roots of g over Q̄p.
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Trigonal curves

Local constancy

Corollary
Let C/Q : f(x, y) = 0 with degx f = 3 be smooth away from infinity.

For p > 3
we have

nC,p,wild =
∑

r∈R/GQp

m(r) · (vp(∆Qp(r)/Qp
)− [Qp(r) : Qp] + fQpQ(r)/Qp

),

where R is the set of roots of discxf(x, y) over Q̄p and the root r has multiplicity
m(r).

Sketch of proof.
We can perturb the defining equation of C to obtain C ′ : f ′(x, y) = 0 with
discxf ′(x, y) square-free. The wild conductor exponent at p is p-adically locally
constant (e.g. Kisin) and one can show that the expression above is locally
constant for pth-power-free discxf(x, y).
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Trigonal curves

An example

Example

Consider the curve

C : f(x, y) = x3 + 5xy + y4 + 125 = 0.

We have discxf(x, y) = −27y8 − 6750y4 − 500y3 − 421875. Over Q5 this
factorises as a linear factor, a quadratic factor and a degree 5 factor. Only the
degree 5 term contributes, and this defines a totally ramified degree 5 extension of
Q5. Hence we can compute

nC,5,wild = 7− 5 + 1 = 3.
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Tetragonal curves

The degree 4 case

Fix C/Q : f(x, y) = 0 with degx f = 4, such that f(x, y) ∈ Q̄(y)[x] has Galois
group S4.

Let R : g(y, z) = 0 be defined by the resolvent cubic of f .

As before D : ∆2 = discxf(x, y).
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Tetragonal curves

The S4-diagram

Q(y, x, z,∆)

Q(y, x, z)

Q(y,
√
z) Q(y, z,∆)

Q(y, x) Q(y, z)

Q(y,∆)

Q(y)

2

3
4

2

2

2

3

2

3

3
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Tetragonal curves

Back to conductors (again)

I’ll spare you the details this time.

Theorem
Let C/Q : f(x, y) = 0 with degx f = 4 be smooth away from infinity. For p > 3
we have

nC,p,wild =
∑

r∈R/GQp

m(r) · (vp(∆Qp(r)/Qp
)− [Qp(r) : Qp] + fQpQ(r)/Qp

),

where R is the set of roots of discxf(x, y) over Q̄p and the root r has multiplicity
m(r).

The proof is much the same as before, but this time we are using a jump between
a relation on the 2-torsion of C and R, and then between the 3-torsion of R and
D.

Note that this relation on 2-torsion comes from an isogeny JC × JR → JA, where
A is the curve corresponding to Q(y,

√
z).
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Tetragonal curves

Revisiting an example

Example

Recall the curve
C : f(x, y) = x3 + 5xy + y4 + 125 = 0

from earlier. We have

discyf(x, y) = 256x9 + 96000x6 − 16875x4 + 12000000x3 + 500000000.

Over Q5 this factorises as the product of a quartic factor and a degree 5 factor.
As before, only the degree 5 term contributes and this defines a totally ramified
degree 5 extension of Q5. Hence we can compute

nC,5,wild = 7− 5 + 1 = 3,

which is (thankfully!) the same result as earlier.
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Higher degree covers

Future work

Example

Consider the genus 8 curve

C : f(x, y) = x4 + 7x2y3 + 49xy5 + 7y + 1 = 0.

Using our results from earlier, we find nC,7,wild = 4.

If we naïvely do the same computation for discyf we actually get the same answer!

Question
Suppose C : f(x, y) = 0 is smooth with degx f = m. Do we have

nC,p,wild =
∑

r∈R/GQp

m(r) · (vp(∆Qp(r)/Qp
)− [Qp(r) : Qp] + fQpQ(r)/Qp

),

for R the roots of discxf(x, y) if p > m?
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Suppose C : f(x, y) = 0 is smooth with degx f = m. Do we have

nC,p,wild =
∑

r∈R/GQp

m(r) · (vp(∆Qp(r)/Qp
)− [Qp(r) : Qp] + fQpQ(r)/Qp

),

for R the roots of discxf(x, y) if p > m?
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