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Conductors

The conductor is a representation-theoretic invariant attached to a curve over (for
simplicity) Q. We will denote the conductor of C'/Q by n¢, and write

where n¢,, is the local conductor exponent at p, an invariant of C'/Q,,.

We further write
nc,p = NC,p,tame + ne,p,wild-

We will be interested in computing the wild conductor exponent n¢ p wild-

Remark

The tame conductor exponent, n¢ p tame, Can be computed from a regular model
of C/Q,.

Harry Spencer Wild conductor exponents 31/7/24 2/14



Wild conductor exponents

Definition

Harry Spencer Wild conductor exponents



Wild conductor exponents

Definition
o0 u
ne,p,wild :/ COdim(Jc[f]G )du,
0

where G = Gal(Q,(Jc[4])/Qp).
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Wild conductor exponents
Definition

Ne,pwild = /00 codim(Jo (%" )du,
0
where G = Gal(Q,(Jc[4])/Qp).

Note that ng pwid = 0 if p > 2g(C) + 1.
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Definition
nNe,p,wild = / codim(Jc[Z]Gu)du,
0

where G = Gal(Q,(Jc[4])/Qp).

Note that ng pwid = 0 if p > 2¢(C) + 1.

We can provably (and practically) compute n¢ pwid in the following cases:

C an elliptic curve.
C hyperelliptic, p > 2 or genus at most 3.
C superelliptic, p prime to exponent.

C non-hyperelliptic of genus 3,4 or 5, p > 2.
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0
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C an elliptic curve.

C hyperelliptic, p > 2 or genus at most 3.

C superelliptic, p prime to exponent.
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Wild conductor exponents

Definition
NC pwild = /OO codim(Jo (%" )du,
0
where G = Gal(Q,(Jc[4])/Qp).

Note that ng pwid = 0 if p > 2¢(C) + 1.

We can provably (and practically) compute n¢ pwid in the following cases:
C an elliptic curve.

C hyperelliptic, p > 2 or genus at most 3.

C superelliptic, p prime to exponent.

C non-hyperelliptic of genus 3,4 or 5, p > 2.

C plane quartic with a rational point.
Today: C': f(z,y) = 0 smooth away from infinity with deg, f € {3,4}, p > 3.
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The degree 3 case

Fix a curve C': f(x,y) = 0 with deg, f =3
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Fix a curve C': f(x,y) = 0 with deg, f = 3 and assume that f has Galois group
S3 when viewed as a polynomial over Q(y).
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The degree 3 case

Fix a curve C': f(x,y) = 0 with deg, f = 3 and assume that f has Galois group
S3 when viewed as a polynomial over Q(y).

Qy,z,A) =

\\

Harry Spencer Wild conductor exponents 31/7/24 4/14



The degree 3 case

Fix a curve C': f(x,y) = 0 with deg, f = 3 and assume that f has Galois group
S3 when viewed as a polynomial over Q(y).

y,x A)
Where A? = disc, f(,y).
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The degree 3 case

Fix a curve C': f(x,y) = 0 with deg, f = 3 and assume that f has Galois group
S3 when viewed as a polynomial over Q(y).

\2\

Where A? = disc, f(x,7). Note that the genus of D is at most g(C) + 1, and
that this bound is sharp when the cover C' — P! is simply ramified.
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Trigonal curves
A map on 3-torsion

Write 7 for a generator of Gal(Q(y, z, A)/Q(y, A)).

B
C: flay) =/ S
D : A? = disc, f(x,y)
P! /
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Trigonal curves

A map on 3-torsion

Write 7 for a generator of Gal(Q(y, z, A)/Q(y, A)).

Theorem

The map m§, — T owl : Jo[3] — Jg[3] is surjective (or injective) onto w7}, (Jp(3]).
Moreover, 7%, is injective on Jp[3] unless B — D is unramified, in which case the
kernel is (P) for some P € Jp|3].

This comes from studying the kernel of the isogeny
gf):JCXJCXJD*)JB

given by (P,Q, R) = m¢,(P) + 7(7&,(Q)) + mp (R).
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Corollary

If g(D) > g(C) — 1, then n¢ p witd = "D p,wild for p > 3.
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Trigonal curves

Back to conductors

Corollary
/fg(D) > g(C) — 1, then NC,p,wild = "D p,wild for p > 3.

Proof.

If (D) = ¢g(C), then Jo[3] = Jp[3]. Otherwise one is an index 9 subspace of the
other, say Jo[3] = Jp[3| D T.
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Back to conductors

Corollary

/fg(D) > g(c) — 1, then NC,p,wild = "D p,wild for p > 3.

Proof.

If (D) = ¢g(C), then Jo[3] = Jp[3]. Otherwise one is an index 9 subspace of the
other, say Jo[3] = Jp[3] @ T. Now T is too small to contribute to wild the
conductor exponent at p > 3. O

v
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Back to conductors

Corollary

/fg(D) > g(c) — 1, then NC,p,wild = ND,p,wild for p > 3.

Proof.

If (D) = ¢g(C), then Jo[3] = Jp[3]. Otherwise one is an index 9 subspace of the
other, say Jo[3] = Jp[3] @ T. Now T is too small to contribute to wild the
conductor exponent at p > 3. O

v

Theorem (Dokchitser’~Maistret—Morgan)

The wild conductor exponent at p # 2 of the hyperelliptic curve H/Q : s* = g(t),
with g square-free, is

npwid = Y, Up(Bg,m/0,) — [Qp(r) 1 Qo] + fo, /0,
r€R/Gq,

where R is the set of roots of g over Q,.

™ i - = = yert
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Local constancy

Corollary

Let C/Q: f(z,y) = 0 with deg, f = 3 be smooth away from infinity.
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Local constancy

Corollary
Let C/Q: f(z,y) = 0 with deg, f = 3 be smooth away from infinity. For p > 3
we have

nopwid =Y, mr)- (vp(Ag,m0,) = [Qp(r) : Qpl + fo,00)/0,);
TER/G@F
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Trigonal curves

Local constancy

Corollary
Let C/Q: f(z,y) = 0 with deg, f = 3 be smooth away from infinity. For p > 3
we have

nepwid =Y m(r)- (p(Ag,m/0,) — Q) : Qo + fo,0m/a,);
TER/G@F

where R is the set of roots of disc, f(x,y) over Q, and the root r has multiplicity
m(r).

v
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Local constancy

Corollary

Let C/Q: f(z,y) = 0 with deg, f = 3 be smooth away from infinity. For p > 3
we have

nopwid =Y, mr)- (vp(Ag,m0,) = [Qp(r) : Qpl + fo,00)/0,);
TER/G@F

where R is the set of roots of disc, f(x,y) over Q, and the root r has multiplicity
m(r).

v

Sketch of proof.

We can perturb the defining equation of C' to obtain C’ : f/(z,y) = 0 with
disc, f'(x, y) square-free.
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Corollary
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Sketch of proof.

We can perturb the defining equation of C' to obtain C’ : f/(z,y) = 0 with
disc, f'(x,y) square-free. The wild conductor exponent at p is p-adically locally
constant (e.g. Kisin)
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Local constancy

Corollary

Let C/Q: f(z,y) = 0 with deg, f = 3 be smooth away from infinity. For p > 3
we have

nepwid =Y m(r)- (p(Ag,m/0,) — Q) : Qo + fo,0m/a,);
TER/G@F

where R is the set of roots of disc, f(x,y) over Q, and the root r has multiplicity
m(r).

v

Sketch of proof.

We can perturb the defining equation of C' to obtain C’ : f/(z,y) = 0 with

disc, f'(x,y) square-free. The wild conductor exponent at p is p-adically locally
constant (e.g. Kisin) and one can show that the expression above is locally
constant for pt"-power-free disc, f(z,y). O

o
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Example

Consider the curve

C:

Trigonal curves

f(z,y) = 2>+ bay + y* +125 = 0.
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An example

Example

Consider the curve
C: flx,y) = +5zy +y* +125=0.

We have disc, f(r,y) = —27y® — 6750y* — 500y> — 421875. Over Q5 this
factorises as a linear factor, a quadratic factor and a degree 5 factor.
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Trigonal curves

An example

Example

Consider the curve
C: f(z,y) =23 +5bzy+y*+125=0.

We have disc, f(r,y) = —27y® — 6750y* — 500y> — 421875. Over Q5 this
factorises as a linear factor, a quadratic factor and a degree 5 factor. Only the
degree 5 term contributes, and this defines a totally ramified degree 5 extension of

Qs.
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Trigonal curves

An example

Example

Consider the curve
C: f(z,y) =23 +5bzy+y*+125=0.

We have disc, f(r,y) = —27y® — 6750y* — 500y> — 421875. Over Q5 this
factorises as a linear factor, a quadratic factor and a degree 5 factor. Only the

degree 5 term contributes, and this defines a totally ramified degree 5 extension of
Q5. Hence we can compute

neswid =17—5+1=3.
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The degree 4 case

Fix C/Q: f(x,y) = 0 with deg, f = 4, such that f(z,y) € Q(y)[z] has Galois
group Sy.
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Tetragonal curves

The degree 4 case

Fix C/Q: f(x,y) = 0 with deg, f = 4, such that f(z,y) € Q(y)[z] has Galois
group Sy.

Let R : g(y,z) = 0 be defined by the resolvent cubic of f.
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The degree 4 case

Fix C/Q: f(x,y) = 0 with deg, f = 4, such that f(z,y) € Q(y)[z] has Galois
group Sy.

Let R : g(y,z) = 0 be defined by the resolvent cubic of f.

As before D : A? = disc, f(z,y).
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The Sy-diagram

Q(y, ») Q(y, 2) 3
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Back to conductors (again)
I'll spare you the details this time.

Theorem

Let C/Q: f(x,y) = 0 with deg, f = 4 be smooth away from infinity.
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Tetragonal curves

Back to conductors (again)

I'll spare you the details this time.
Theorem

Let C/Q: f(x,y) = 0 with deg, f =4 be smooth away from infinity. For p > 3
we have

nepwid = mr)- (0p(Ag,m/e,) = [Qu(r) : Q] + fo,00/a,);
T‘GR/GQP
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Tetragonal curves

Back to conductors (again)

I'll spare you the details this time.
Theorem

Let C/Q: f(x,y) = 0 with deg, f =4 be smooth away from infinity. For p > 3
we have

nepwia = Y mr)- (0p(Ag,m/e,) = Q) : Q) + fo,00m/0,)s
T‘ER/GQP

where R is the set of roots of disc, f(z,y) over Q,
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Back to conductors (again)

I'll spare you the details this time.

Theorem

Let C/Q: f(x,y) = 0 with deg, f =4 be smooth away from infinity. For p > 3
we have

nepwia = Y mr)- (0p(Ag,m/e,) = Q) : Q) + fo,00m/0,)s
T‘ER/GQP

where R is the set of roots of disc, f(z,y) over Q, and the root r has multiplicity
m(r).

o
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Back to conductors (again)

I'll spare you the details this time.

Theorem

Let C/Q: f(x,y) = 0 with deg, f =4 be smooth away from infinity. For p > 3
we have

nepwia = Y mr)- (0p(Ag,m/e,) = Q) : Q) + fo,00m/0,)s
T‘ER/GQP

where R is the set of roots of disc, f(z,y) over Q, and the root r has multiplicity
m(r).

o

The proof is much the same as before,

Harry Spencer Wild conductor exponents 31/7/24 12/14



Back to conductors (again)

I'll spare you the details this time.

Theorem

Let C/Q: f(x,y) = 0 with deg, f =4 be smooth away from infinity. For p > 3
we have

nepwia = Y mr)- (0p(Ag,m/e,) = Q) : Q) + fo,00m/0,)s
T‘GR/GQP

where R is the set of roots of disc, f(z,y) over Q, and the root r has multiplicity
m(r).

o

The proof is much the same as before, but this time we are using a jump between
a relation on the 2-torsion of C' and R,
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Back to conductors (again)

I'll spare you the details this time.

Theorem

Let C/Q: f(x,y) =0 with deg, f = 4 be smooth away from infinity. Forp > 3
we have

nepwia = Y mr)- (0p(Ag,m/e,) = Q) : Q) + fo,00m/0,)s
T‘GR/GQP

where R is the set of roots of disc, f(z,y) over Q, and the root r has multiplicity
m(r).

v

The proof is much the same as before, but this time we are using a jump between
a relation on the 2-torsion of C' and R, and then between the 3-torsion of R and
D.
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Back to conductors (again)

I'll spare you the details this time.

Theorem

Let C/Q: f(x,y) =0 with deg, f = 4 be smooth away from infinity. Forp > 3
we have

nepwia = Y mr)- (0p(Ag,m/e,) = Q) : Q) + fo,00m/0,)s
T‘GR/GQP

where R is the set of roots of disc, f(z,y) over Q, and the root r has multiplicity
m(r).

v

The proof is much the same as before, but this time we are using a jump between
a relation on the 2-torsion of C' and R, and then between the 3-torsion of R and
D.

Note that this relation on 2-torsion comes from an isogeny Jo X Jgp — Ja,
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Back to conductors (again)

I'll spare you the details this time.

Theorem

Let C/Q: f(x,y) =0 with deg, f = 4 be smooth away from infinity. Forp > 3
we have

nepwia = Y mr)- (0p(Ag,m/e,) = Q) : Q) + fo,00m/0,)s
T‘GR/GQP

where R is the set of roots of disc, f(z,y) over Q, and the root r has multiplicity
m(r).

v

The proof is much the same as before, but this time we are using a jump between
a relation on the 2-torsion of C' and R, and then between the 3-torsion of R and
D.

Note that this relation on 2-torsion comes from an isogeny Jo X Jr — Ja, where
A is the curve corresponding to Q(y, /z).
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Revisiting an example

Tetragonal curves

Example

Recall the curve

from earlier.

C:

flz,y) =2 +5zy +y* +125=0

o = - = Ha e
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Tetragonal curves

Revisiting an example

Example
Recall the curve
C: f(x,y)=a2>+bxy+y* +125=0

from earlier. We have

disc, f(z,y) = 2562 + 960002° — 168752* + 120000002 + 500000000.
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Tetragonal curves

Revisiting an example

Example

Recall the curve
C: f(x,y)=a2>+bxy+y* +125=0

from earlier. We have

disc, f(z,y) = 2562 + 960002° — 168752* + 120000002 + 500000000.

Over Q5 this factorises as the product of a quartic factor and a degree 5 factor.
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Tetragonal curves

Revisiting an example

Example
Recall the curve
C: f(x,y)=a2>+bxy+y* +125=0

from earlier. We have

disc, f(z,y) = 2562 + 960002° — 168752* + 120000002 + 500000000.

Over Q5 this factorises as the product of a quartic factor and a degree 5 factor.
As before, only the degree 5 term contributes and this defines a totally ramified
degree 5 extension of Q5.
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Tetragonal curves

Revisiting an example

Example

Recall the curve
C: f(x,y)=a2>+bxy+y* +125=0

from earlier. We have

disc, f(z,y) = 2562 + 960002° — 168752* + 120000002 + 500000000.

Over Q5 this factorises as the product of a quartic factor and a degree 5 factor.
As before, only the degree 5 term contributes and this defines a totally ramified
degree 5 extension of Q5. Hence we can compute

neswid =7—5+1=23,
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Revisiting an example

Example

Recall the curve
C: f(x,y)=a2>+bxy+y* +125=0

from earlier. We have
disc, f(z,y) = 2562 + 960002° — 168752* + 120000002 + 500000000.

Over Q5 this factorises as the product of a quartic factor and a degree 5 factor.
As before, only the degree 5 term contributes and this defines a totally ramified
degree 5 extension of Q5. Hence we can compute

neswid =7—5+1=23,

which is (thankfully!) the same result as earlier.
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Future work

Example

Consider the genus 8 curve

C: f(z,y) =a* + 722> +492y° + Ty + 1= 0.
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Higher degree covers

Future work
Example
Consider the genus 8 curve

C: f(z,y) =a* + 722> +492y° + Ty + 1= 0.

Using our results from earlier, we find nc 7 wia = 4.
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Higher degree covers

Future work

Example
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Example

Consider the genus 8 curve
C: f(z,y) =a* + 722> +492y° + Ty + 1= 0.
Using our results from earlier, we find nc 7 wia = 4.

If we naively do the same computation for disc, f we actually get the same answer!
v

Question
Suppose C': f(z,y) = 0 is smooth with deg, f = m. Do we have

nepwida =Y m(r)- (p(Ag,m/0,) — Q) : Qo + fo,0m/a,);
TER/GQP

for R the roots of disc, f(z,y) if p > m?
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