Wild conductor exponents of trigonal and tetragonal curves

Harry Spencer

University College, London

31 July 2024

Harry		

< □ > < □ > < □ > < □ > < □ >

Harr		

イロト イヨト イヨト イヨト

The conductor is a representation-theoretic invariant attached to a curve over (for simplicity) $\mathbb{Q}.$

イロト イヨト イヨト イヨト

The conductor is a representation-theoretic invariant attached to a curve over (for simplicity) \mathbb{Q} . We will denote the conductor of C/\mathbb{Q} by n_C ,

< □ > < □ > < □ > < □ > < □ >

The conductor is a representation-theoretic invariant attached to a curve over (for simplicity) \mathbb{Q} . We will denote the conductor of C/\mathbb{Q} by n_C , and write

$$n_C = \prod_{\mathsf{bad } p} p^{n_{C,p}}$$

where $n_{C,p}$ is the local conductor exponent at p, an invariant of C/\mathbb{Q}_p .

イロト イヨト イヨト イヨト

The conductor is a representation-theoretic invariant attached to a curve over (for simplicity) \mathbb{Q} . We will denote the conductor of C/\mathbb{Q} by n_C , and write

$$n_C = \prod_{\mathsf{bad}} p^{n_{C,p}}$$

where $n_{C,p}$ is the local conductor exponent at p, an invariant of C/\mathbb{Q}_p .

We further write

$$n_{C,p} = n_{C,p,\mathsf{tame}} + n_{C,p,\mathsf{wild}}.$$

イロト イヨト イヨト イヨト

The conductor is a representation-theoretic invariant attached to a curve over (for simplicity) \mathbb{Q} . We will denote the conductor of C/\mathbb{Q} by n_C , and write

$$n_C = \prod_{\mathsf{bad}} p^{n_{C,p}}$$

where $n_{C,p}$ is the local conductor exponent at p, an invariant of C/\mathbb{Q}_p .

We further write

$$n_{C,p} = n_{C,p,\mathsf{tame}} + n_{C,p,\mathsf{wild}}.$$

We will be interested in computing the wild conductor exponent $n_{C,p,\text{wild}}$.

イロン イ団 とく ヨン イヨン

The conductor is a representation-theoretic invariant attached to a curve over (for simplicity) \mathbb{Q} . We will denote the conductor of C/\mathbb{Q} by n_C , and write

$$n_C = \prod_{\mathsf{bad}} p^{n_{C,p}}$$

where $n_{C,p}$ is the local conductor exponent at p, an invariant of C/\mathbb{Q}_p .

We further write

$$n_{C,p} = n_{C,p,\mathsf{tame}} + n_{C,p,\mathsf{wild}}.$$

We will be interested in computing the wild conductor exponent $n_{C,p,\text{wild}}$.

Remark

The tame conductor exponent, $n_{C,p,\text{tame}}$, can be computed from a regular model of C/\mathbb{Q}_p .

Harry Spencer	Wild conductor exponents		31/7	/24		2/14
	•	< 🗗 ▶	<≣≯	<≣>	- 2	$\mathcal{O}\mathcal{A}\mathcal{C}$

Definition

Harry		

2

< □ > < □ > < □ > < □ > < □ >

Definition

$$n_{C,p, \mathsf{wild}} = \int_0^\infty \mathsf{codim}(J_C[\ell]^{G^u}) \mathsf{d} u,$$

where $G = \operatorname{Gal}(\mathbb{Q}_p(J_C[\ell])/\mathbb{Q}_p).$

< □ > < □ > < □ > < □ > < □ >

Definition

$$n_{C,p,\mathsf{wild}} = \int_0^\infty \mathsf{codim}(J_C[\ell]^{G^u}) \mathsf{d}u,$$

where $G = \operatorname{Gal}(\mathbb{Q}_p(J_C[\ell])/\mathbb{Q}_p).$

Note that $n_{C,p,\text{wild}} = 0$ if p > 2g(C) + 1.

イロト イヨト イヨト イヨト

Definition

$$n_{C,p,\mathsf{wild}} = \int_0^\infty \mathsf{codim}(J_C[\ell]^{G^u}) \mathsf{d} u,$$

where $G = \operatorname{Gal}(\mathbb{Q}_p(J_C[\ell])/\mathbb{Q}_p).$

Note that $n_{C,p,\text{wild}} = 0$ if p > 2g(C) + 1.

We can provably (and practically) compute $n_{C,p,wild}$ in the following cases:

イロト イヨト イヨト イヨト

Definition

$$n_{C,p,\mathsf{wild}} = \int_0^\infty \mathsf{codim}(J_C[\ell]^{G^u}) \mathsf{d} u,$$

where $G = \operatorname{Gal}(\mathbb{Q}_p(J_C[\ell])/\mathbb{Q}_p).$

Note that $n_{C,p,\text{wild}} = 0$ if p > 2g(C) + 1.

We can provably (and practically) compute $n_{C,p,wild}$ in the following cases:

• C an elliptic curve.

イロト イヨト イヨト イヨト

Definition

$$n_{C,p,\mathsf{wild}} = \int_0^\infty \mathsf{codim}(J_C[\ell]^{G^u}) \mathsf{d} u,$$

where $G = \operatorname{Gal}(\mathbb{Q}_p(J_C[\ell])/\mathbb{Q}_p).$

Note that $n_{C,p,\text{wild}} = 0$ if p > 2g(C) + 1.

We can provably (and practically) compute $n_{C,p,wild}$ in the following cases:

- C an elliptic curve.
- C hyperelliptic, p > 2 or genus at most 3.

イロト イヨト イヨト イヨト

Definition

$$n_{C,p,\mathsf{wild}} = \int_0^\infty \mathsf{codim}(J_C[\ell]^{G^u}) \mathsf{d} u,$$

where $G = \operatorname{Gal}(\mathbb{Q}_p(J_C[\ell])/\mathbb{Q}_p).$

Note that $n_{C,p,\text{wild}} = 0$ if p > 2g(C) + 1.

We can provably (and practically) compute $n_{C,p,wild}$ in the following cases:

- C an elliptic curve.
- C hyperelliptic, p > 2 or genus at most 3.
- C superelliptic, p prime to exponent.

イロト イ団ト イヨト イヨト

Definition

$$n_{C,p,\mathsf{wild}} = \int_0^\infty \mathsf{codim}(J_C[\ell]^{G^u}) \mathsf{d} u,$$

where $G = \operatorname{Gal}(\mathbb{Q}_p(J_C[\ell])/\mathbb{Q}_p).$

Note that $n_{C,p,\text{wild}} = 0$ if p > 2g(C) + 1.

We can provably (and practically) compute $n_{C,p,wild}$ in the following cases:

- C an elliptic curve.
- C hyperelliptic, p > 2 or genus at most 3.
- C superelliptic, p prime to exponent.
- C non-hyperelliptic of genus 3, 4 or 5, p > 2.

イロト イ団ト イヨト イヨト

Definition

$$n_{C,p,\mathsf{wild}} = \int_0^\infty \mathsf{codim}(J_C[\ell]^{G^u}) \mathsf{d} u,$$

where $G = \operatorname{Gal}(\mathbb{Q}_p(J_C[\ell])/\mathbb{Q}_p).$

Note that $n_{C,p,\text{wild}} = 0$ if p > 2g(C) + 1.

We can provably (and practically) compute $n_{C,p,wild}$ in the following cases:

- C an elliptic curve.
- C hyperelliptic, p > 2 or genus at most 3.
- C superelliptic, p prime to exponent.
- C non-hyperelliptic of genus 3, 4 or 5, p > 2.
- C plane quartic with a rational point.

イロト イ団ト イヨト イヨト

Definition

$$n_{C,p,\mathsf{wild}} = \int_0^\infty \mathsf{codim}(J_C[\ell]^{G^u}) \mathsf{d} u,$$

where $G = \operatorname{Gal}(\mathbb{Q}_p(J_C[\ell])/\mathbb{Q}_p).$

Note that $n_{C,p,\text{wild}} = 0$ if p > 2g(C) + 1.

We can provably (and practically) compute $n_{C,p,wild}$ in the following cases:

- C an elliptic curve.
- C hyperelliptic, p > 2 or genus at most 3.
- C superelliptic, p prime to exponent.
- C non-hyperelliptic of genus 3, 4 or 5, p > 2.
- C plane quartic with a rational point.

Today: C: f(x,y) = 0 smooth away from infinity with $\deg_x f \in \{3,4\}$, p > 3.

Trigonal curves

The degree 3 case

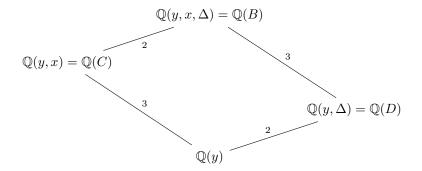
Fix a curve C: f(x,y) = 0 with $\deg_x f = 3$

イロト イヨト イヨト イヨト

Fix a curve C : f(x, y) = 0 with $\deg_x f = 3$ and assume that f has Galois group S_3 when viewed as a polynomial over $\overline{\mathbb{Q}}(y)$.

イロト イヨト イヨト イヨト

Fix a curve C : f(x, y) = 0 with $\deg_x f = 3$ and assume that f has Galois group S_3 when viewed as a polynomial over $\overline{\mathbb{Q}}(y)$.

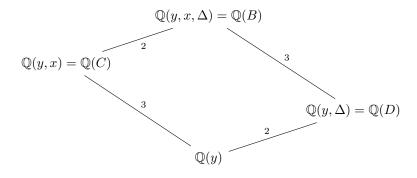


Harr		

4/14

<ロト < 回 > < 回 > < 回 > < 回 >

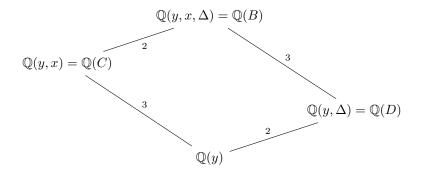
Fix a curve C : f(x, y) = 0 with $\deg_x f = 3$ and assume that f has Galois group S_3 when viewed as a polynomial over $\overline{\mathbb{Q}}(y)$.



Where $\Delta^2 = \operatorname{disc}_x f(x, y)$.

イロト イ団ト イヨト イヨト

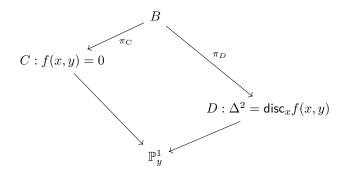
Fix a curve C : f(x, y) = 0 with $\deg_x f = 3$ and assume that f has Galois group S_3 when viewed as a polynomial over $\overline{\mathbb{Q}}(y)$.



Where $\Delta^2 = \operatorname{disc}_x f(x, y)$. Note that the genus of D is at most g(C) + 1, and that this bound is sharp when the cover $C \to \mathbb{P}^1$ is simply ramified.

< □ > < □ > < □ > < □ > < □ >

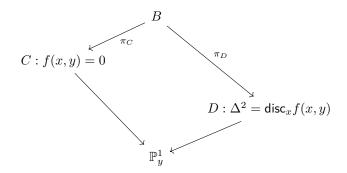
Write τ for a generator of $Gal(\mathbb{Q}(y, x, \Delta)/\mathbb{Q}(y, \Delta))$.



5/14

< □ > < □ > < □ > < □ > < □ >

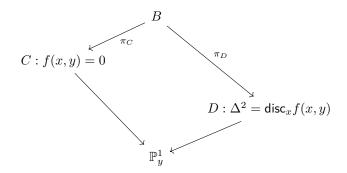
Write τ for a generator of $\mathsf{Gal}(\mathbb{Q}(y,x,\Delta)/\mathbb{Q}(y,\Delta)).$



Theorem

The map $\pi_C^* - \tau \circ \pi_C^* : J_C[3] \to J_B[3]$ is surjective (or injective) onto $\pi_D^*(J_D[3])$.

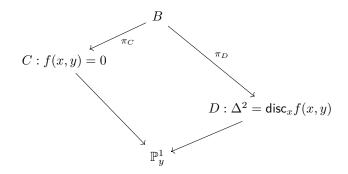
Write τ for a generator of $\mathsf{Gal}(\mathbb{Q}(y,x,\Delta)/\mathbb{Q}(y,\Delta)).$



Theorem

The map $\pi_C^* - \tau \circ \pi_C^* : J_C[3] \to J_B[3]$ is surjective (or injective) onto $\pi_D^*(J_D[3])$. Moreover, π_D^* is injective on $J_D[3]$ unless $B \to D$ is unramified,

Write τ for a generator of $Gal(\mathbb{Q}(y, x, \Delta)/\mathbb{Q}(y, \Delta))$.



Theorem

The map $\pi_C^* - \tau \circ \pi_C^* : J_C[3] \to J_B[3]$ is surjective (or injective) onto $\pi_D^*(J_D[3])$. Moreover, π_D^* is injective on $J_D[3]$ unless $B \to D$ is unramified, in which case the kernel is $\langle P \rangle$ for some $P \in J_D[3]$.

Write τ for a generator of $Gal(\mathbb{Q}(y, x, \Delta)/\mathbb{Q}(y, \Delta))$.

Theorem

The map $\pi_C^* - \tau \circ \pi_C^* : J_C[3] \to J_B[3]$ is surjective (or injective) onto $\pi_D^*(J_D[3])$. Moreover, π_D^* is injective on $J_D[3]$ unless $B \to D$ is unramified, in which case the kernel is $\langle P \rangle$ for some $P \in J_D[3]$.

イロト イ団ト イヨト イヨト

Write τ for a generator of $Gal(\mathbb{Q}(y, x, \Delta)/\mathbb{Q}(y, \Delta))$.

Theorem

The map $\pi_C^* - \tau \circ \pi_C^* : J_C[3] \to J_B[3]$ is surjective (or injective) onto $\pi_D^*(J_D[3])$. Moreover, π_D^* is injective on $J_D[3]$ unless $B \to D$ is unramified, in which case the kernel is $\langle P \rangle$ for some $P \in J_D[3]$.

This comes from studying the kernel of the isogeny

 $\phi: J_C \times J_C \times J_D \to J_B$

given by $(P, Q, R) \mapsto \pi^*_C(P) + \tau(\pi^*_C(Q)) + \pi^*_D(R).$

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Corollary

If $g(D) \ge g(C) - 1$, then $n_{C,p,\text{wild}} = n_{D,p,\text{wild}}$ for p > 3.

イロン イ団 とく ヨン イヨン

Corollary

If $g(D) \ge g(C) - 1$, then $n_{C,p,\text{wild}} = n_{D,p,\text{wild}}$ for p > 3.

Proof.

Harry		

イロト イヨト イヨト イヨト

Corollary

If $g(D) \ge g(C) - 1$, then $n_{C,p,\text{wild}} = n_{D,p,\text{wild}}$ for p > 3.

Proof.

If
$$g(D) = g(C)$$
, then $J_C[3] \cong J_D[3]$.

イロト イヨト イヨト イヨト

Corollary

If $g(D) \ge g(C) - 1$, then $n_{C,p,\text{wild}} = n_{D,p,\text{wild}}$ for p > 3.

Proof.

If g(D) = g(C), then $J_C[3] \cong J_D[3]$. Otherwise one is an index 9 subspace of the other, say $J_C[3] \cong J_D[3] \oplus T$.

イロト イ団ト イヨト イヨト

Corollary

If $g(D) \ge g(C) - 1$, then $n_{C,p,\text{wild}} = n_{D,p,\text{wild}}$ for p > 3.

Proof.

If g(D) = g(C), then $J_C[3] \cong J_D[3]$. Otherwise one is an index 9 subspace of the other, say $J_C[3] \cong J_D[3] \oplus T$. Now T is too small to contribute to wild the conductor exponent at p > 3.

イロト イ団ト イヨト イヨト

Corollary

If $g(D) \ge g(C) - 1$, then $n_{C,p,\text{wild}} = n_{D,p,\text{wild}}$ for p > 3.

Proof.

If g(D) = g(C), then $J_C[3] \cong J_D[3]$. Otherwise one is an index 9 subspace of the other, say $J_C[3] \cong J_D[3] \oplus T$. Now T is too small to contribute to wild the conductor exponent at p > 3.

Theorem (Dokchitser²–Maistret–Morgan)

The wild conductor exponent at $p \neq 2$ of the hyperelliptic curve H/\mathbb{Q} : $s^2 = g(t)$, with g square-free, is

$$n_{H,p,\textit{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_p(r)/\mathbb{Q}_p},$$

where R is the set of roots of g over $\overline{\mathbb{Q}}_p$.

Corollary

Let C/\mathbb{Q} : f(x,y) = 0 with $\deg_x f = 3$ be smooth away from infinity.

Corollary

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=3$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

2

8/14

Corollary

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=3$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p})$$

where R is the set of roots of $disc_x f(x,y)$ over $\overline{\mathbb{Q}}_p$

< □ > < □ > < □ > < □ > < □ >

Corollary

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=3$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $disc_x f(x, y)$ over $\overline{\mathbb{Q}}_p$ and the root r has multiplicity m(r).

< □ > < □ > < □ > < □ > < □ >

Corollary

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=3$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $disc_x f(x, y)$ over $\overline{\mathbb{Q}}_p$ and the root r has multiplicity m(r).

Sketch of proof.

We can perturb the defining equation of C to obtain C': f'(x,y) = 0 with $\operatorname{disc}_x f'(x,y)$ square-free.

< □ > < □ > < □ > < □ > < □ >

Corollary

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=3$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $disc_x f(x, y)$ over $\overline{\mathbb{Q}}_p$ and the root r has multiplicity m(r).

Sketch of proof.

We can perturb the defining equation of C to obtain C' : f'(x, y) = 0 with $\operatorname{disc}_x f'(x, y)$ square-free. The wild conductor exponent at p is p-adically locally constant (e.g. Kisin)

	4	
Harry Spencer	Wild conductor exponents	31/7/24

Corollary

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=3$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $disc_x f(x, y)$ over $\overline{\mathbb{Q}}_p$ and the root r has multiplicity m(r).

Sketch of proof.

We can perturb the defining equation of C to obtain C' : f'(x, y) = 0 with $\operatorname{disc}_x f'(x, y)$ square-free. The wild conductor exponent at p is p-adically locally constant (e.g. Kisin) and one can show that the expression above is locally constant for p^{th} -power-free $\operatorname{disc}_x f(x, y)$.

< □ > < □ > < □ > < □ > < □ >

8/14

Example

	< I	⊒ ►	< 🗗 >	€≯	◆ 圖	- E	୬୯୯
Wild conductor exponents				31/7	/24		9/14

Harry Spencer

Example

Consider the curve

$$C: \quad f(x,y) = x^3 + 5xy + y^4 + 125 = 0.$$

			_	
Harry Spencer	Wild conductor exponents	31/7/24		9/14

Example

Consider the curve

Harry Spencer

$$C: f(x,y) = x^3 + 5xy + y^4 + 125 = 0.$$

We have $\operatorname{disc}_x f(x,y) = -27y^8 - 6750y^4 - 500y^3 - 421875$.

		_
Wild conductor exponents	31/7/24	9 / 14

Example

Consider the curve

$$C: \quad f(x,y) = x^3 + 5xy + y^4 + 125 = 0.$$

We have disc_x $f(x,y) = -27y^8 - 6750y^4 - 500y^3 - 421875$. Over \mathbb{Q}_5 this factorises as a linear factor, a quadratic factor and a degree 5 factor.

< □ > < □ > < □ > < □ > < □ >

Example

Consider the curve

$$C: \ \ f(x,y)=x^3+5xy+y^4+125=0.$$

We have disc_x $f(x, y) = -27y^8 - 6750y^4 - 500y^3 - 421875$. Over \mathbb{Q}_5 this factorises as a linear factor, a quadratic factor and a degree 5 factor. Only the degree 5 term contributes, and this defines a totally ramified degree 5 extension of \mathbb{Q}_5 .

< □ > < □ > < □ > < □ > < □ >

Example

Consider the curve

$$C: \ f(x,y) = x^3 + 5xy + y^4 + 125 = 0.$$

We have disc_x $f(x, y) = -27y^8 - 6750y^4 - 500y^3 - 421875$. Over \mathbb{Q}_5 this factorises as a linear factor, a quadratic factor and a degree 5 factor. Only the degree 5 term contributes, and this defines a totally ramified degree 5 extension of \mathbb{Q}_5 . Hence we can compute

$$n_{C,5,\text{wild}} = 7 - 5 + 1 = 3.$$

< □ > < □ > < □ > < □ > < □ >

The degree 4 case

Fix C/\mathbb{Q} : f(x,y) = 0 with $\deg_x f = 4$, such that $f(x,y) \in \overline{\mathbb{Q}}(y)[x]$ has Galois group S_4 .

The degree 4 case

Fix C/\mathbb{Q} : f(x,y) = 0 with $\deg_x f = 4$, such that $f(x,y) \in \overline{\mathbb{Q}}(y)[x]$ has Galois group S_4 .

Let R: g(y, z) = 0 be defined by the resolvent cubic of f.

The degree 4 case

Fix C/\mathbb{Q} : f(x,y) = 0 with $\deg_x f = 4$, such that $f(x,y) \in \overline{\mathbb{Q}}(y)[x]$ has Galois group S_4 .

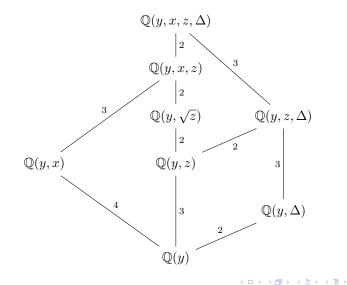
Let R: g(y, z) = 0 be defined by the resolvent cubic of f.

As before $D: \Delta^2 = \operatorname{disc}_x f(x, y)$.

イロト イヨト イヨト イヨト

Tetragonal curves

The S_4 -diagram



Harr		

I'll spare you the details this time.

I'll spare you the details this time.

Theorem

Let C/\mathbb{Q} : f(x,y) = 0 with $\deg_x f = 4$ be smooth away from infinity.

э

12/14

< □ > < □ > < □ > < □ > < □ >

I'll spare you the details this time.

Theorem

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=4$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

		Spencer	Harry
--	--	---------	-------

I'll spare you the details this time.

Theorem

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=4$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $disc_x f(x,y)$ over $\overline{\mathbb{Q}}_p$

I'll spare you the details this time.

Theorem

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=4$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $disc_x f(x, y)$ over $\overline{\mathbb{Q}}_p$ and the root r has multiplicity m(r).

イロト イ団ト イヨト イヨト

I'll spare you the details this time.

Theorem

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=4$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $disc_x f(x, y)$ over $\overline{\mathbb{Q}}_p$ and the root r has multiplicity m(r).

The proof is much the same as before,

< □ > < □ > < □ > < □ > < □ >

I'll spare you the details this time.

Theorem

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=4$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $disc_x f(x, y)$ over $\overline{\mathbb{Q}}_p$ and the root r has multiplicity m(r).

The proof is much the same as before, but this time we are using a jump between a relation on the 2-torsion of C and R,

イロト イヨト イヨト イヨト

I'll spare you the details this time.

Theorem

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=4$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $\operatorname{disc}_x f(x, y)$ over $\overline{\mathbb{Q}}_p$ and the root r has multiplicity m(r).

The proof is much the same as before, but this time we are using a jump between a relation on the 2-torsion of C and R, and then between the 3-torsion of R and D.

I'll spare you the details this time.

Theorem

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=4$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $disc_x f(x, y)$ over $\overline{\mathbb{Q}}_p$ and the root r has multiplicity m(r).

The proof is much the same as before, but this time we are using a jump between a relation on the 2-torsion of C and R, and then between the 3-torsion of R and D.

Note that this relation on 2-torsion comes from an isogeny $J_C \times J_R \to J_A$,

I'll spare you the details this time.

Theorem

Let $C/\mathbb{Q}: f(x,y)=0$ with $\deg_x f=4$ be smooth away from infinity. For p>3 we have

$$n_{C,p,\text{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

where R is the set of roots of $disc_x f(x, y)$ over $\overline{\mathbb{Q}}_p$ and the root r has multiplicity m(r).

The proof is much the same as before, but this time we are using a jump between a relation on the 2-torsion of C and R, and then between the 3-torsion of R and D.

Note that this relation on 2-torsion comes from an isogeny $J_C \times J_R \to J_A$, where A is the curve corresponding to $\mathbb{Q}(y, \sqrt{z})$.

Example

Spencer	

Example

Recall the curve

Harry Spencer

$$C: \quad f(x,y) = x^3 + 5xy + y^4 + 125 = 0$$

from earlier.

•		12 4 61
Wild conductor exponents	31/7/24	13 / 14

4 JE 1

- .

- -

Example

Recall the curve

$$C: \quad f(x,y) = x^3 + 5xy + y^4 + 125 = 0$$

from earlier. We have

Harry Spence

$$\mathsf{disc}_y f(x,y) = 256x^9 + 96000x^6 - 16875x^4 + 12000000x^3 + 500000000.$$

er	Wild conductor exponents	
----	--------------------------	--

2

Example

Recall the curve

$$C: \quad f(x,y) = x^3 + 5xy + y^4 + 125 = 0$$

from earlier. We have

$$\mathsf{disc}_y f(x,y) = 256x^9 + 96000x^6 - 16875x^4 + 12000000x^3 + 500000000.$$

Over \mathbb{Q}_5 this factorises as the product of a quartic factor and a degree 5 factor.

< □ > < □ > < □ > < □ > < □ >

Example

Recall the curve

$$C: \quad f(x,y) = x^3 + 5xy + y^4 + 125 = 0$$

from earlier. We have

$$\mathsf{disc}_y f(x,y) = 256x^9 + 96000x^6 - 16875x^4 + 12000000x^3 + 500000000.$$

Over \mathbb{Q}_5 this factorises as the product of a quartic factor and a degree 5 factor. As before, only the degree 5 term contributes and this defines a totally ramified degree 5 extension of \mathbb{Q}_5 .

< □ > < □ > < □ > < □ > < □ >

Example

Recall the curve

$$C: \quad f(x,y) = x^3 + 5xy + y^4 + 125 = 0$$

from earlier. We have

$$\mathsf{disc}_y f(x,y) = 256x^9 + 96000x^6 - 16875x^4 + 12000000x^3 + 500000000.$$

Over \mathbb{Q}_5 this factorises as the product of a quartic factor and a degree 5 factor. As before, only the degree 5 term contributes and this defines a totally ramified degree 5 extension of \mathbb{Q}_5 . Hence we can compute

$$n_{C,5,\text{wild}} = 7 - 5 + 1 = 3,$$

< □ > < □ > < □ > < □ > < □ >

Example

Recall the curve

$$C: \quad f(x,y) = x^3 + 5xy + y^4 + 125 = 0$$

from earlier. We have

$$\mathsf{disc}_y f(x,y) = 256x^9 + 96000x^6 - 16875x^4 + 12000000x^3 + 500000000.$$

Over \mathbb{Q}_5 this factorises as the product of a quartic factor and a degree 5 factor. As before, only the degree 5 term contributes and this defines a totally ramified degree 5 extension of \mathbb{Q}_5 . Hence we can compute

$$n_{C,5,\text{wild}} = 7 - 5 + 1 = 3,$$

which is (thankfully!) the same result as earlier.

Harry	y Spencer

< □ > < □ > < □ > < □ > < □ >

Example

Harr		

Example

Consider the genus 8 curve

$$C: f(x,y) = x^4 + 7x^2y^3 + 49xy^5 + 7y + 1 = 0.$$

æ

・ロト ・回ト ・ヨト ・ヨト

Example

Consider the genus 8 curve

$$C: \quad f(x,y) = x^4 + 7x^2y^3 + 49xy^5 + 7y + 1 = 0.$$

Using our results from earlier, we find $n_{C,7,\text{wild}} = 4$.

< □ > < □ > < □ > < □ > < □ >

Example

Consider the genus 8 curve

$$C: \quad f(x,y) = x^4 + 7x^2y^3 + 49xy^5 + 7y + 1 = 0.$$

Using our results from earlier, we find $n_{C,7,\text{wild}} = 4$.

If we naïvely do the same computation for $disc_u f$ we actually get the same answer!

< □ > < □ > < □ > < □ > < □ >

Example

Consider the genus 8 curve

$$C: \quad f(x,y) = x^4 + 7x^2y^3 + 49xy^5 + 7y + 1 = 0.$$

Using our results from earlier, we find $n_{C,7,\text{wild}} = 4$.

If we naïvely do the same computation for $disc_y f$ we actually get the same answer!

Question

イロト イヨト イヨト イヨト

Example

Consider the genus 8 curve

$$C: \quad f(x,y) = x^4 + 7x^2y^3 + 49xy^5 + 7y + 1 = 0.$$

Using our results from earlier, we find $n_{C,7,\text{wild}} = 4$.

If we naïvely do the same computation for $disc_y f$ we actually get the same answer!

Question

Suppose C: f(x, y) = 0 is smooth with $\deg_x f = m$.

イロト イ団ト イヨト イヨト

Example

Consider the genus 8 curve

$$C: \quad f(x,y) = x^4 + 7x^2y^3 + 49xy^5 + 7y + 1 = 0.$$

Using our results from earlier, we find $n_{C,7,\text{wild}} = 4$.

If we naïvely do the same computation for $disc_y f$ we actually get the same answer!

Question

Suppose C: f(x,y) = 0 is smooth with $\deg_x f = m$. Do we have

$$n_{C,p,\mathsf{wild}} = \sum_{r \in R/G_{\mathbb{Q}_p}} m(r) \cdot (v_p(\Delta_{\mathbb{Q}_p(r)/\mathbb{Q}_p}) - [\mathbb{Q}_p(r) : \mathbb{Q}_p] + f_{\mathbb{Q}_pQ(r)/\mathbb{Q}_p}),$$

for R the roots of $\operatorname{disc}_x f(x, y)$ if p > m?

イロト イ団ト イヨト イヨト