Stark's Conjectures and the eTNC Formalism

Harry Spencer

$28^{\text {th }}$ April 2023

Introduction

L-functions are an important part of number theory, but most of our 'knowledge' of them is conjectural - e.g. the BSD conjecture.

Introduction

L-functions are an important part of number theory, but most of our 'knowledge' of them is conjectural - e.g. the BSD conjecture.

One of the few cases where we have a pretty complete* picture are Dedekind ζ-functions, associated to number fields.

Introduction

L-functions are an important part of number theory, but most of our 'knowledge' of them is conjectural - e.g. the BSD conjecture.

One of the few cases where we have a pretty complete* picture are Dedekind ζ-functions, associated to number fields. Here we have the famous analytic class number formula, which tells us the order of vanishing and leading term.

Introduction

L-functions are an important part of number theory, but most of our 'knowledge' of them is conjectural - e.g. the BSD conjecture.

One of the few cases where we have a pretty complete* picture are Dedekind ζ-functions, associated to number fields. Here we have the famous analytic class number formula, which tells us the order of vanishing and leading term.

The eTNC tries to generalise both of these things, to tell us about the orders of vanishing and leading terms of 'motivic' L-functions.

Introduction

L-functions are an important part of number theory, but most of our 'knowledge' of them is conjectural - e.g. the BSD conjecture.

One of the few cases where we have a pretty complete* picture are Dedekind ζ-functions, associated to number fields. Here we have the famous analytic class number formula, which tells us the order of vanishing and leading term.

The eTNC tries to generalise both of these things, to tell us about the orders of vanishing and leading terms of 'motivic' L-functions.

The full statement is difficult and opaque, so I will just give a special case which is closer to the ACNF side of things.

Structure

(1) Analytic Class Number formula

2 Stark's Conjectures
3 The eTNC: Background
(4) The eTNC: Statement
(5) Stark's Conjectures and the eTNC
(6) What next?

Analytic class number formula

First, we recall the definition of the Dedekind ζ-function for a number field k :

$$
\zeta_{k}(s)=\prod_{\mathfrak{p} \notin S_{\infty}}\left(1-N(\mathfrak{p})^{-s}\right)^{-1},
$$

where S_{∞} is the set of infinite places.

Analytic class number formula

First, we recall the definition of the Dedekind ζ-function for a number field k :

$$
\zeta_{k}(s)=\prod_{\mathfrak{p} \notin S_{\infty}}\left(1-N(\mathfrak{p})^{-s}\right)^{-1},
$$

where S_{∞} is the set of infinite places.
In fact, we will consider a slight modification:

Definition (S-truncated ζ-function)

$$
\zeta_{k, s}(s)=\prod_{\mathfrak{p} \notin S}\left(1-N(\mathfrak{p})^{-s}\right)^{-1},
$$

for a finite set of primes S containing S_{∞}.

Analytic class number formula

We have a generalisation of the usual analytic class number formula (ACNF) to the S-truncated ζ-function:

Analytic class number formula

We have a generalisation of the usual analytic class number formula (ACNF) to the S-truncated ζ-function:

Theorem (Dedekind)

$\zeta_{k, s}$ has a zero of order $|S|-1$ at $s=0$ and the leading coefficient of the Taylor expansion is

$$
-\frac{h_{S} R_{S}}{w}
$$

Analytic class number formula

We have a generalisation of the usual analytic class number formula (ACNF) to the S-truncated ζ-function:

Theorem (Dedekind)

$\zeta_{k, s}$ has a zero of order $|S|-1$ at $s=0$ and the leading coefficient of the Taylor expansion is

$$
-\frac{h_{S} R_{S}}{w}
$$

Here, h_{S} is the class number of the ring

$$
\mathcal{O}_{S}=\bigcap_{\mathfrak{p} \notin S} \mathcal{O}_{K, \mathfrak{p}}
$$

Analytic class number formula

We have a generalisation of the usual analytic class number formula (ACNF) to the S-truncated ζ-function:

Theorem (Dedekind)

$\zeta_{k, s}$ has a zero of order $|S|-1$ at $s=0$ and the leading coefficient of the Taylor expansion is

$$
-\frac{h_{S} R_{S}}{w}
$$

Here, h_{S} is the class number of the ring

$$
\mathcal{O}_{S}=\bigcap_{\mathfrak{p} \notin S} \mathcal{O}_{K, \mathfrak{p}}
$$

and, for $\left\{u_{i}\right\}$ generators for $\mathcal{O}_{S}^{\times} /$tors and some choice $\mathfrak{p}_{0} \in S$,

$$
R_{S}=\left|\operatorname{det}\left(\log \left|u_{i}\right|_{\mathfrak{p}}\right)_{\mathfrak{p} \in S-\mathfrak{p}_{0}}\right|
$$

Interlude for non-number theorists

Let K / k be a Galois extension of number fields, with abelian Galois group $G=\operatorname{Gal}(K / k)$.

Interlude for non-number theorists

Let K / k be a Galois extension of number fields, with abelian Galois group $G=\operatorname{Gal}(K / k)$.

For \mathfrak{p} unramified in K, there is a Frobenius element characterised by

$$
\operatorname{Frob}_{\mathfrak{p}} \cdot x-x^{N(\mathfrak{p})} \in \mathfrak{p} \mathcal{O}_{K} .
$$

Interlude for non-number theorists

Let K / k be a Galois extension of number fields, with abelian Galois group $G=\operatorname{Gal}(K / k)$.

For \mathfrak{p} unramified in K, there is a Frobenius element characterised by

$$
\operatorname{Frob}_{\mathfrak{p}} \cdot x-x^{N(\mathfrak{p})} \in \mathfrak{p} \mathcal{O}_{K} .
$$

This is well-defined up to conjugation (and inertia).

Stark's conjectures

Stark's conjectures are an attempt to weakly generalise the ACNF.

Stark's conjectures

Stark's conjectures are an attempt to weakly generalise the ACNF.
We consider K / k a Galois extension of number fields, with Galois group G and S a finite set of primes of k including the infinite primes. We write S^{\prime} for the primes lying above S.

Stark's conjectures

Stark's conjectures are an attempt to weakly generalise the ACNF.
We consider K / k a Galois extension of number fields, with Galois group G and S a finite set of primes of k including the infinite primes. We write S^{\prime} for the primes lying above S.

Definition (S-truncated Artin L-function)

For (χ, V) a representation of G,

$$
L_{S}(\chi, s)=\prod_{\mathfrak{p} \notin S} \operatorname{det}\left(1-\operatorname{Frob}_{\mathfrak{p}} N_{k / \mathbb{Q}}(\mathfrak{p})^{-s} \mid V^{I_{p}}\right)^{-1}
$$

Stark's conjectures

Stark's conjectures are an attempt to weakly generalise the ACNF.
We consider K / k a Galois extension of number fields, with Galois group G and S a finite set of primes of k including the infinite primes. We write S^{\prime} for the primes lying above S.

Definition (S-truncated Artin L-function)

For (χ, V) a representation of G,

$$
L_{S}(\chi, s)=\prod_{\mathfrak{p} \notin S} \operatorname{det}\left(1-\operatorname{Frob}_{\mathfrak{p}} N_{k / \mathbb{Q}}(\mathfrak{p})^{-s} \mid V^{p_{p}}\right)^{-1} .
$$

Stark predicts a recipe for a 'Stark regulator' such that the leading coefficient $L_{s}(\chi)$ of $L_{s}(\chi, s)$ at $s=0$ is a product of this regulator and an algebraic number.

Stark's conjectures

We give the recipe for Stark's regulator. Define

$$
x_{S}=\left\{\sum_{\mathfrak{P} \in S^{\prime}} n_{\mathfrak{P}} \mathfrak{P} \mid \sum_{\mathfrak{P} \in S^{\prime}} n_{\mathfrak{P}}=0\right\}
$$

and

$$
U_{S}=\left\{u \in K \quad \mid \quad\|u\|_{\mathfrak{P}}=1 \text { for all } \mathfrak{P} \notin S^{\prime}\right\}
$$

Stark's conjectures

We give the recipe for Stark's regulator. Define

$$
x_{S}=\left\{\sum_{\mathfrak{P} \in S^{\prime}} n_{\mathfrak{P} \mathfrak{P}} \mid \sum_{\mathfrak{P} \in S^{\prime}} n_{\mathfrak{P}}=0\right\}
$$

and

$$
U_{S}=\left\{u \in K \quad \mid \quad\|u\|_{\mathfrak{P}}=1 \text { for all } \mathfrak{P} \notin S^{\prime}\right\}
$$

Theorem (Dirichlet's S-unit theorem)

The \mathbb{C}-linear map $\lambda_{S}: \mathbb{C} U_{S} \rightarrow \mathbb{C} X_{S}$ via

$$
1 \otimes u \mapsto \sum_{\mathfrak{P} \in S^{\prime}} \log \|u\|_{\mathfrak{P} \mathfrak{P}}
$$

is an isomorphism of $\mathbb{C}[G]$-modules.

Stark's conjectures

Given any $\mathbb{C}[G]$-homomorphism $f: \mathbb{C} X_{S} \rightarrow \mathbb{C} U_{S}$, define Stark's regulator

$$
R(\chi, f)=\operatorname{det}\left(\lambda_{S} \circ f \mid V\right),
$$

where this denotes the determinant of the induced automorphism

$$
\operatorname{Hom}_{G}\left(V^{*}, \mathbb{C} X_{S}\right) \rightarrow \operatorname{Hom}_{G}\left(V^{*}, \mathbb{C} X_{S}\right)
$$

given by postcomposition with $\lambda_{S} \circ f$.

Stark's conjectures

Given any $\mathbb{C}[G]$-homomorphism $f: \mathbb{C} X_{S} \rightarrow \mathbb{C} U_{S}$, define Stark's regulator

$$
R(\chi, f)=\operatorname{det}\left(\lambda_{S} \circ f \mid V\right),
$$

where this denotes the determinant of the induced automorphism

$$
\operatorname{Hom}_{G}\left(V^{*}, \mathbb{C} X_{S}\right) \rightarrow \operatorname{Hom}_{G}\left(V^{*}, \mathbb{C} X_{S}\right)
$$

given by postcomposition with $\lambda_{S} \circ f$. Choose f to be a $\mathbb{Q}[G]$-isomorphism:

Conjecture (Stark's Main Conjecture)

Set $A(\chi, f)=R(\chi, f) / L(\chi)$. Then $A(\chi, f) \in \mathbb{Q}(\chi)$, and for all $\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})$

$$
A(\chi, f)^{\sigma}=A\left(\chi^{\sigma}, f\right) .
$$

The eTNC: Background

The eTNC: Background

We give a brief introduction to determinant modules, restricting to the case of free R-modules M of finite rank r :

Definition

$$
[M]_{R}=\bigwedge^{r} M \cong R \quad \text { and } \quad[M]_{R}^{-1}=\operatorname{Hom}_{R}\left([M]_{R}, R\right)
$$

The eTNC: Background

We give a brief introduction to determinant modules, restricting to the case of free R-modules M of finite rank r :

Definition

$$
[M]_{R}=\bigwedge^{r} M \cong R \quad \text { and } \quad[M]_{R}^{-1}=\operatorname{Hom}_{R}\left([M]_{R}, R\right)
$$

This extends to finitely generated R-modules M for $R=\mathbb{Q}[G], \mathbb{C}[G]$, etc. for finite abelian groups G by writing

$$
R=\prod_{i} F_{i} \quad \text { and } \quad M=\bigoplus_{i} M_{i}
$$

for F_{i} fields and M_{i} a free F_{i}-module, and taking

$$
[M]_{R}=\prod_{i}\left[M_{i}\right]_{F_{i}}
$$

The eTNC: Background

This construction has the following properties:
(1) Given $\mathcal{E}: 0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0$, we obtain canonical

$$
\iota(\mathcal{E}):[N]_{R} \xrightarrow{\sim}[M]_{R} \otimes_{R}[P]_{R} .
$$

The eTNC: Background

This construction has the following properties:
(1) Given $\mathcal{E}: 0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0$, we obtain canonical

$$
\iota(\mathcal{E}):[N]_{R} \xrightarrow{\sim}[M]_{R} \otimes_{R}[P]_{R} .
$$

(2) We have canonical isomorphism

$$
\operatorname{ev}_{M}:[M]_{R} \otimes_{R}[M]_{R}^{-1} \rightarrow R
$$

by $m \otimes f \mapsto f(m)$.

The eTNC: Background

This construction has the following properties:
(1) Given $\mathcal{E}: 0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0$, we obtain canonical

$$
\iota(\mathcal{E}):[N]_{R} \xrightarrow{\sim}[M]_{R} \otimes_{R}[P]_{R} .
$$

2 We have canonical isomorphism

$$
\mathrm{ev}_{M}:[M]_{R} \otimes_{R}[M]_{R}^{-1} \rightarrow R
$$

by $m \otimes f \mapsto f(m)$.
(3) Given $f: M \xrightarrow{\sim} N$, we obtain canonical isomorphism

$$
t(f):[M]_{R} \otimes_{R}[N]_{R}^{-1} \xrightarrow{[f]_{R} \otimes 1}[N]_{R} \otimes_{R}[N]_{R}^{-1} \xrightarrow{\mathrm{ev}_{N}} R,
$$

where $[f]_{R}$ is the map induced by f.

The eTNC: Background

To explicate the link to determinants, we note that for $f: M \xrightarrow{\sim} N$ the following commutes

The eTNC: Background

To explicate the link to determinants, we note that for $f: M \xrightarrow{\sim} N$ the following commutes

where the maps β_{\bullet} are given by a choice of basis and Φ is the matrix of f with respect to the chosen bases.

The eTNC: Background

To explicate the link to determinants, we note that for $f: M \xrightarrow{\sim} N$ the following commutes

where the maps β. are given by a choice of basis and Φ is the matrix of f with respect to the chosen bases.

We can do pretty much the same thing for $R=\mathbb{Z}[G]$, although we lose the fact that $[M]_{\mathbb{Z}[G]}$ is a free rank one $\mathbb{Z}[G]$-module.

The eTNC: Statement

We return to the setting of K / k an abelian extension of number fields, with Galois group G and $S_{\infty} \subseteq S$ a finite set of primes of k.

The eTNC: Statement

We return to the setting of K / k an abelian extension of number fields, with Galois group G and $S_{\infty} \subseteq S$ a finite set of primes of k.

Proposition (Chinburg)

Suppose $C I\left(\mathcal{O}_{S}\right)=1$. There exists an exact sequence of $\mathbb{Z}[G]$-modules

$$
\tau_{S}: 0 \rightarrow U_{S} \rightarrow E_{0} \xrightarrow{d} E_{1} \rightarrow X_{S} \rightarrow 0
$$

such that E_{0}, E_{1} are finitely generated of finite projective dimension.

The eTNC: Statement

We return to the setting of K / k an abelian extension of number fields, with Galois group G and $S_{\infty} \subseteq S$ a finite set of primes of k.

Proposition (Chinburg)

Suppose $C I\left(\mathcal{O}_{S}\right)=1$. There exists an exact sequence of $\mathbb{Z}[G]$-modules

$$
\tau_{S}: 0 \rightarrow U_{S} \rightarrow E_{0} \xrightarrow{d} E_{1} \rightarrow X_{S} \rightarrow 0
$$

such that E_{0}, E_{1} are finitely generated of finite projective dimension.

Theorem

Suppose S contains the primes ramified in K / k. There exists

$$
0 \rightarrow \mathrm{Cl}\left(\mathcal{O}_{S}\right) \rightarrow \widetilde{X}_{S} \rightarrow X_{S} \rightarrow 0
$$

such that we can take τ_{S} as above after replacing X_{S} by \widetilde{X}_{S}.

The eTNC: Statement

τ_{S} gives rise to

$$
\begin{aligned}
& \mathcal{E}_{1}: 0 \rightarrow \mathbb{Q} U_{S} \rightarrow \mathbb{Q} E_{0} \rightarrow \mathbb{Q} d\left(E_{0}\right) \rightarrow 0 \\
& \mathcal{E}_{2}: 0 \rightarrow \mathbb{Q} d\left(E_{0}\right) \rightarrow \mathbb{Q} E_{1} \rightarrow \mathbb{Q} \widetilde{X}_{S} \rightarrow 0
\end{aligned}
$$

The eTNC: Statement

τ_{S} gives rise to

$$
\begin{aligned}
& \mathcal{E}_{1}: 0 \rightarrow \mathbb{Q} U_{S} \rightarrow \mathbb{Q} E_{0} \rightarrow \mathbb{Q} d\left(E_{0}\right) \rightarrow 0 \\
& \mathcal{E}_{2}: 0 \rightarrow \mathbb{Q} d\left(E_{0}\right) \rightarrow \mathbb{Q} E_{1} \rightarrow \mathbb{Q} \widetilde{X}_{S} \rightarrow 0
\end{aligned}
$$

from which we obtain a $\mathbb{Q}[G]$-module isomorphism

$$
\iota:\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1} \xrightarrow{\left.\operatorname{ev}_{\mathbb{Q}\left(E_{0}\right)}\right)\left(\iota\left(\mathcal{E}_{1}\right) \otimes \iota\left(\mathcal{E}_{2}\right)\right)}\left[\mathbb{Q} U_{S}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} \tilde{X}_{S}\right]_{\mathbb{Q}[G]}^{-1} .
$$

The eTNC: Statement

τ_{S} gives rise to

$$
\begin{aligned}
& \mathcal{E}_{1}: 0 \rightarrow \mathbb{Q} U_{S} \rightarrow \mathbb{Q} E_{0} \rightarrow \mathbb{Q} d\left(E_{0}\right) \rightarrow 0 \\
& \mathcal{E}_{2}: 0 \rightarrow \mathbb{Q} d\left(E_{0}\right) \rightarrow \mathbb{Q} E_{1} \rightarrow \mathbb{Q} \widetilde{X}_{S} \rightarrow 0
\end{aligned}
$$

from which we obtain a $\mathbb{Q}[G]$-module isomorphism

$$
\iota:\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1} \xrightarrow{\left.e_{\mathbb{Q}\left(E_{0}\right)}\right)\left(\iota\left(\mathcal{E}_{1}\right) \otimes \iota\left(\mathcal{E}_{2}\right)\right)}\left[\mathbb{Q} U_{S}\right]_{\mathbb{Q}}[G]\left[\mathbb{Q} \widetilde{X}_{S}\right]_{\mathbb{Q}[G]}^{-1} .
$$

Lastly we take the $\mathbb{R}[G]$-module isomorphism ξ_{s} to be

$$
\xi_{S}:\left[\mathbb{R} E_{0}\right]_{\mathbb{R}[G]}\left[\mathbb{R} E_{1}\right]_{\mathbb{R}[G]}^{-1} \xrightarrow{\mathbb{R} \otimes \iota}\left[\mathbb{R} U_{S}\right]_{\mathbb{R}[G]}\left[\mathbb{R} \widetilde{X}_{S}\right]_{\mathbb{R}[G]}^{-1} \xrightarrow{t\left(\lambda_{S}\right)} \mathbb{R}[G] .
$$

The eTNC: Statement

τ_{S} gives rise to

$$
\begin{aligned}
& \mathcal{E}_{1}: 0 \rightarrow \mathbb{Q} U_{S} \rightarrow \mathbb{Q} E_{0} \rightarrow \mathbb{Q} d\left(E_{0}\right) \rightarrow 0 \\
& \mathcal{E}_{2}: 0 \rightarrow \mathbb{Q} d\left(E_{0}\right) \rightarrow \mathbb{Q} E_{1} \rightarrow \mathbb{Q} \widetilde{X}_{S} \rightarrow 0
\end{aligned}
$$

from which we obtain a $\mathbb{Q}[G]$-module isomorphism

$$
\iota:\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1} \xrightarrow{\operatorname{ev}\left(\mathbb{Q}\left(E_{0}\right)^{\circ}\left(\iota\left(\mathcal{E}_{1}\right) \otimes \iota\left(\mathcal{E}_{2}\right)\right)\right.}\left[\mathbb{Q} U_{S}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} \widetilde{X}_{S}\right]_{\mathbb{Q}[G]}^{-1} .
$$

Lastly we take the $\mathbb{R}[G]$-module isomorphism ξ_{S} to be
$\xi_{S}:\left[\mathbb{R} E_{0}\right]_{\mathbb{R}[G]}\left[\mathbb{R} E_{1}\right]_{\mathbb{R}[G]}^{-1} \xrightarrow{\mathbb{R} \otimes \iota}\left[\mathbb{R} U_{S}\right]_{\mathbb{R}[G]}\left[\mathbb{R} \widetilde{X}_{S}\right]_{\mathbb{R}[G]}^{-1} \xrightarrow{t\left(\lambda_{S}\right)} \mathbb{R}[G]$.

Definition (Determinant lattice)

$$
\Xi_{S}=\xi_{s}\left(\left[E_{0}\right]_{\mathbb{Z}[G]}\left[E_{1}\right]_{\mathbb{Z}[G]}^{-1}\right) .
$$

The eTNC: Statement

The determinant lattice $\bar{\Xi}_{s}$ will be a prediction of a lattice which encodes the leading term of $L_{S}(\chi, s)$ at $s=0$. To define this lattice we need:

Definition

For irreducible representations χ of G, define $e_{\chi} \in \mathbb{C}[G]$ to be the central idempotent given by

$$
e_{\chi}(\rho)= \begin{cases}\chi, & \text { if } \rho=\chi \\ 0, & \text { else }\end{cases}
$$

on irreducible ρ.

The eTNC: Statement

The determinant lattice $\bar{\Xi}_{S}$ will be a prediction of a lattice which encodes the leading term of $L_{s}(\chi, s)$ at $s=0$. To define this lattice we need:

Definition

For irreducible representations χ of G, define $e_{\chi} \in \mathbb{C}[G]$ to be the central idempotent given by

$$
e_{\chi}(\rho)= \begin{cases}\chi, & \text { if } \rho=\chi \\ 0, & \text { else }\end{cases}
$$

on irreducible ρ.

Definition (Stickelberger element)

Define $\theta_{S}(s)=\sum_{\chi \in \hat{G}} L(\bar{\chi}, s) e_{\chi}$ and write $\theta_{S}^{*}(0)$ for the leading term at $s=0$.

The eTNC: Statement

Finally we are ready to state the eTNC:

The eTNC: Statement

Finally we are ready to state the eTNC:
Conjecture (eTNC)

$$
\mathbb{Z}[G] \cdot \theta_{S}^{*}(0)=\Xi_{s} .
$$

The eTNC: Statement

Finally we are ready to state the eTNC:

Conjecture (eTNC)

$$
\mathbb{Z}[G] \cdot \theta_{S}^{*}(0)=\Xi_{s} .
$$

Theorem

This conjecture is known to hold for
(1) $k=\mathbb{Q}$ (Burns, Greither, Flach);
(2) K / k is quadratic (Kim).

The eTNC: Statement

Finally we are ready to state the eTNC:

Conjecture (eTNC)

$$
\mathbb{Z}[G] \cdot \theta_{S}^{*}(0)=\Xi_{s} .
$$

Theorem

This conjecture is known to hold for
(1) $k=\mathbb{Q}$ (Burns, Greither, Flach);
(2) K / k is quadratic (Kim).

This is supposed to be a 'universal' refinement of Stark's conjecture, which in turn was a 'weak' generalisation of the analytic class number formula.

Let's now try to understand how this relation works.

Stark's Conjectures and the eTNC

Firstly, let's check the implication
eTNC \Longrightarrow ACNF :

Stark's Conjectures and the eTNC

Firstly, let's check the implication

$$
\text { eTNC } \Longrightarrow \text { ACNF : }
$$

Take $K=k$, so G is trivial.

Stark's Conjectures and the eTNC

Firstly, let's check the implication

$$
\text { eTNC } \Longrightarrow \text { ACNF : }
$$

Take $K=k$, so G is trivial. There is a unique class of 2-extensions and we have $\widetilde{X}_{S} \cong X_{S} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right) \cong \mathbb{Z}^{|S|-1} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right)$,

Stark's Conjectures and the eTNC

Firstly, let's check the implication

$$
\text { eTNC } \Longrightarrow \text { ACNF : }
$$

Take $K=k$, so G is trivial. There is a unique class of 2-extensions and we have $\widetilde{X}_{S} \cong X_{S} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right) \cong \mathbb{Z}^{|S|-1} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right)$, so we may take

$$
\tau_{S}: 0 \rightarrow U_{S} \cong \mathbb{Z}^{|S|-1} \times \mu(k) \rightarrow E_{0} \xrightarrow{0} E_{1} \rightarrow \widetilde{X}_{S} \rightarrow 0
$$

with $E_{0}=\mathbb{Z}^{|S|-1} \times \mu(k)$ and $E_{1}=\mathbb{Z}^{|S|-1} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right)$.

Stark's Conjectures and the eTNC

Firstly, let's check the implication

$$
\text { eTNC } \Longrightarrow \text { ACNF : }
$$

Take $K=k$, so G is trivial. There is a unique class of 2-extensions and we have $\widetilde{X}_{S} \cong X_{S} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right) \cong \mathbb{Z}^{|S|-1} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right)$, so we may take

$$
\tau_{S}: 0 \rightarrow U_{S} \cong \mathbb{Z}^{|S|-1} \times \mu(k) \rightarrow E_{0} \xrightarrow{0} E_{1} \rightarrow \widetilde{X}_{S} \rightarrow 0
$$

with $E_{0}=\mathbb{Z}^{|S|-1} \times \mu(k)$ and $E_{1}=\mathbb{Z}^{|S|-1} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right)$. We must compute the image under ξ_{S} of $\left[E_{0}\right]_{\mathbb{Z}}\left[E_{1}\right]_{\mathbb{Z}}^{-1}$.

Stark's Conjectures and the eTNC

Firstly, let's check the implication

$$
\text { eTNC } \Longrightarrow \text { ACNF : }
$$

Take $K=k$, so G is trivial. There is a unique class of 2-extensions and we have $\widetilde{X}_{S} \cong X_{S} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right) \cong \mathbb{Z}^{|S|-1} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right)$, so we may take

$$
\tau_{S}: 0 \rightarrow U_{S} \cong \mathbb{Z}^{|S|-1} \times \mu(k) \rightarrow E_{0} \xrightarrow{0} E_{1} \rightarrow \widetilde{X}_{S} \rightarrow 0
$$

with $E_{0}=\mathbb{Z}^{|S|-1} \times \mu(k)$ and $E_{1}=\mathbb{Z}^{|S|-1} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right)$. We must compute the image under ξ_{s} of $\left[E_{0}\right]_{\mathbb{Z}}\left[E_{1}\right]_{\mathbb{Z}}^{-1}$. We note that, for H finite,

$$
\left[H \times \mathbb{Z}^{r}\right]_{\mathbb{Z}}=[H]_{\mathbb{Z}}\left[\mathbb{Z}^{r}\right]_{\mathbb{Z}}=\frac{1}{|H|}\left[\mathbb{Z}^{r}\right]_{\mathbb{Z}}
$$

Stark's Conjectures and the eTNC

Firstly, let's check the implication

$$
\text { eTNC } \Longrightarrow \text { ACNF : }
$$

Take $K=k$, so G is trivial. There is a unique class of 2-extensions and we have $\widetilde{X}_{S} \cong X_{S} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right) \cong \mathbb{Z}^{|S|-1} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right)$, so we may take

$$
\tau_{S}: 0 \rightarrow U_{S} \cong \mathbb{Z}^{|S|-1} \times \mu(k) \rightarrow E_{0} \xrightarrow{0} E_{1} \rightarrow \widetilde{X}_{S} \rightarrow 0
$$

with $E_{0}=\mathbb{Z}^{|S|-1} \times \mu(k)$ and $E_{1}=\mathbb{Z}^{|S|-1} \times \mathrm{Cl}\left(\mathcal{O}_{S}\right)$. We must compute the image under ξ_{s} of $\left[E_{0}\right]_{\mathbb{Z}}\left[E_{1}\right]_{\mathbb{Z}}^{-1}$. We note that, for H finite,

$$
\left[H \times \mathbb{Z}^{r}\right]_{\mathbb{Z}}=[H]_{\mathbb{Z}}\left[\mathbb{Z}^{r}\right]_{\mathbb{Z}}=\frac{1}{|H|}\left[\mathbb{Z}^{r}\right]_{\mathbb{Z}}
$$

Hence we have

$$
\xi_{S}: \frac{h_{S}}{w}\left[\mathbb{Z}^{|S|-1}\right]_{\mathbb{Z}}\left[\mathbb{Z}^{|S|-1}\right]_{\mathbb{Z}}^{-1} \xrightarrow{\mathbb{R} \otimes \iota\left(\mathcal{E}_{1}\right) \iota\left(\mathcal{E}_{2}\right)}\left[\mathbb{R} U_{S}\right]_{\mathbb{R}}\left[\mathbb{R} \widetilde{X}_{S}\right]_{\mathbb{R}}^{-1} \xrightarrow{t\left(\lambda_{S}\right)} \mathbb{R}[G]
$$

Stark's Conjectures and the eTNC

Therefore, the eTNC gives

$$
\mathbb{Z} \cdot \theta_{S}^{*}(0)=\Xi_{S}=\frac{h_{S} \operatorname{det}\left(\lambda_{S}\right)}{w} \cdot \mathbb{Z}
$$

and so the leading term of $\theta_{S}(0)=\zeta_{S}(0)$ is $\pm h_{S} \operatorname{det}\left(\lambda_{S}\right) / w$.

Stark's Conjectures and the eTNC

Therefore, the eTNC gives

$$
\mathbb{Z} \cdot \theta_{S}^{*}(0)=\Xi_{S}=\frac{h_{S} \operatorname{det}\left(\lambda_{S}\right)}{w} \cdot \mathbb{Z}
$$

and so the leading term of $\theta_{S}(0)=\zeta_{S}(0)$ is $\pm h_{S} \operatorname{det}\left(\lambda_{S}\right) / w$.
This \pm is the best we can hope for, because the eTNC is 'sensitive to changes in sign', while we took absolute values in the definition of Dirichlet's regulator.

Now let's re-cast Stark's conjecture in terms of $\theta_{S}^{*}(0)$.

Stark's Conjectures and the eTNC

Fix a $\mathbb{Q}[G]$-module isomorphism $f: \mathbb{Q} U_{S} \rightarrow \mathbb{Q} X_{S}$ and consider the quantity

$$
R(f)=\operatorname{det}_{\mathbb{R}[G]}\left(\lambda_{S} \circ f^{-1}\right) \in \mathbb{R}[G]^{\times}
$$

Stark's Conjectures and the eTNC

Fix a $\mathbb{Q}[G]$-module isomorphism $f: \mathbb{Q} U_{S} \rightarrow \mathbb{Q} X_{S}$ and consider the quantity

$$
R(f)=\operatorname{det}_{\mathbb{R}[G]}\left(\lambda_{S} \circ f^{-1}\right) \in \mathbb{R}[G]^{\times} .
$$

Proposition

Stark's main conjecture in the abelian setting is equivalent to the statement

$$
\theta_{S}^{*}(0) R(f)^{-1} \in \mathbb{Q}[G] .
$$

Stark's Conjectures and the eTNC

Fix a $\mathbb{Q}[G]$-module isomorphism $f: \mathbb{Q} U_{S} \rightarrow \mathbb{Q} X_{S}$ and consider the quantity

$$
R(f)=\operatorname{det}_{\mathbb{R}[G]}\left(\lambda_{S} \circ f^{-1}\right) \in \mathbb{R}[G]^{\times} .
$$

Proposition

Stark's main conjecture in the abelian setting is equivalent to the statement

$$
\theta_{S}^{*}(0) R(f)^{-1} \in \mathbb{Q}[G] .
$$

The idea here is that we can identify $\mathbb{C}[G]$ with $\Pi_{\chi} \mathbb{C}$. Then the statement becomes

$$
\chi\left(\theta_{S}^{*}(0) R(f)^{-1}\right)^{\sigma}=\chi^{\sigma}\left(\theta_{S}^{*}(0) R(f)^{-1}\right) \text { for all } \chi,
$$

for all $\sigma \in \operatorname{Aut}(\mathbb{C})$ - but we also find

$$
\chi\left(\theta_{S}^{*}(0) / R(f)\right)=L(\chi) / \operatorname{det}\left(\lambda_{s}^{-1} \circ f \mid \chi\right)=A(\chi, f)^{-1} .
$$

Stark's Conjectures and the eTNC

Upon tensoring with \mathbb{Q}, the eTNC gives

$$
\mathbb{Q}[G] \cdot \theta_{S}^{*}(0)=\xi_{S}\left(\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1}\right)
$$

Stark's Conjectures and the eTNC

Upon tensoring with \mathbb{Q}, the eTNC gives

$$
\begin{aligned}
\mathbb{Q}[G] \cdot \theta_{S}^{*}(0) & =\xi_{S}\left(\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1}\right) \\
& =t\left(\lambda_{S}\right)\left(\left[\mathbb{Q} U_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right)
\end{aligned}
$$

Stark's Conjectures and the eTNC

Upon tensoring with \mathbb{Q}, the eTNC gives

$$
\begin{aligned}
\mathbb{Q}[G] \cdot \theta_{S}^{*}(0) & =\xi_{S}\left(\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1}\right) \\
& =t\left(\lambda_{S}\right)\left(\left[\mathbb{Q} U_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\lambda_{S}\left(\mathbb{Q} U_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right)
\end{aligned}
$$

Stark's Conjectures and the eTNC

Upon tensoring with \mathbb{Q}, the eTNC gives

$$
\begin{aligned}
\mathbb{Q}[G] \cdot \theta_{S}^{*}(0) & =\xi_{S}\left(\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1}\right) \\
& =t\left(\lambda_{S}\right)\left(\left[\mathbb{Q} U_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\lambda_{S}\left(\mathbb{Q} U_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\lambda_{S} \circ f^{-1}\left(\mathbb{Q} X_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right)
\end{aligned}
$$

Stark's Conjectures and the eTNC

Upon tensoring with \mathbb{Q}, the eTNC gives

$$
\begin{aligned}
\mathbb{Q}[G] \cdot \theta_{S}^{*}(0) & =\xi_{S}\left(\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1}\right) \\
& =t\left(\lambda_{S}\right)\left(\left[\mathbb{Q} U_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\lambda_{S}\left(\mathbb{Q} U_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\lambda_{S} \circ f^{-1}\left(\mathbb{Q} X_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\mathbb{Q} X_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \cdot \operatorname{det}_{\mathbb{R}[G]}\left(\lambda_{S} \circ f^{-1}\right)
\end{aligned}
$$

Stark's Conjectures and the eTNC

Upon tensoring with \mathbb{Q}, the eTNC gives

$$
\begin{aligned}
\mathbb{Q}[G] \cdot \theta_{S}^{*}(0) & =\xi_{S}\left(\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1}\right) \\
& =t\left(\lambda_{S}\right)\left(\left[\mathbb{Q} U_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q}} x_{S}\left(\left[\lambda_{S}\left(\mathbb{Q} U_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\lambda_{S} \circ f^{-1}\left(\mathbb{Q} X_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q}} x_{S}\left(\left[\mathbb{Q} X_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \cdot \operatorname{det}_{\mathbb{R}[G]}\left(\lambda_{S} \circ f^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\mathbb{Q} X_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \cdot R(f)
\end{aligned}
$$

Stark's Conjectures and the eTNC

Upon tensoring with \mathbb{Q}, the eTNC gives

$$
\begin{aligned}
\mathbb{Q}[G] \cdot \theta_{S}^{*}(0) & =\xi_{S}\left(\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1}\right) \\
& =t\left(\lambda_{S}\right)\left(\left[\mathbb{Q} U_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\lambda_{S}\left(\mathbb{Q} U_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\lambda_{S} \circ f^{-1}\left(\mathbb{Q} X_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\mathbb{Q} X_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \cdot \operatorname{det}_{\mathbb{R}[G]}\left(\lambda_{S} \circ f^{-1}\right) \\
& =\mathrm{ev} \mathbb{Q}_{S}\left(\left[\mathbb{Q} X_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \cdot R(f) \\
& =\mathbb{Q}[G] \cdot R(f) .
\end{aligned}
$$

Stark's Conjectures and the eTNC

Upon tensoring with \mathbb{Q}, the eTNC gives

$$
\begin{aligned}
\mathbb{Q}[G] \cdot \theta_{S}^{*}(0) & =\xi_{S}\left(\left[\mathbb{Q} E_{0}\right]_{\mathbb{Q}[G]}\left[\mathbb{Q} E_{1}\right]_{\mathbb{Q}[G]}^{-1}\right) \\
& =t\left(\lambda_{S}\right)\left(\left[\mathbb{Q} U_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q}}\left(\left[X_{S}\left(\mathbb{Q} U_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\mathrm{ev}_{\mathbb{Q} X_{S}}\left(\left[\lambda_{S} \circ f^{-1}\left(\mathbb{Q} X_{S}\right)\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \\
& =\operatorname{ev}_{\mathbb{Q}} X_{S}\left(\left[\mathbb{Q} X_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \cdot \operatorname{det}_{\mathbb{R}[G]}\left(\lambda_{S} \circ f^{-1}\right) \\
& =e v_{\mathbb{Q} X_{S}}\left(\left[\mathbb{Q} X_{S}\right]\left[\mathbb{Q} X_{S}\right]^{-1}\right) \cdot R(f) \\
& =\mathbb{Q}[G] \cdot R(f) .
\end{aligned}
$$

Therefore we have

$$
\mathrm{eTNC} \Longrightarrow \theta_{S}^{*}(0) \cdot R(f)^{-1} \in \mathbb{Q}[G] \Longrightarrow \text { Stark's conjecture. }
$$

What next?

So far we have

- Stated Stark's conjecture
- Stated a special case of the eTNC
- Shown that the eTNC implies Stark's conjecture.

What next?

So far we have

- Stated Stark's conjecture
- Stated a special case of the eTNC
- Shown that the eTNC implies Stark's conjecture.

What does the eTNC actually do for us?

What next?

So far we have

- Stated Stark's conjecture
- Stated a special case of the eTNC
- Shown that the eTNC implies Stark's conjecture.

What does the eTNC actually do for us?
Well, let's rewind for a moment.

Why the plural?

Stark's conjectures are quite miraculous - particularly in the case where the order of vanishing of is 1 , where there are many striking consequences of Stark's main conjecture.

Why the plural?

Stark's conjectures are quite miraculous - particularly in the case where the order of vanishing of is 1 , where there are many striking consequences of Stark's main conjecture.

Suppose $S=T \cup\{\mathfrak{p}\}$ for \mathfrak{p} totally split in K. It is a fact that $u \theta_{T}(0) \in \mathbb{Z}[G]$ for all $u \in \mathrm{Ann}_{\mathbb{Z}[G]}(\mu(K))$.

Why the plural?

Stark's conjectures are quite miraculous - particularly in the case where the order of vanishing of is 1 , where there are many striking consequences of Stark's main conjecture.

Suppose $S=T \cup\{\mathfrak{p}\}$ for \mathfrak{p} totally split in K. It is a fact that $u \theta_{T}(0) \in \mathbb{Z}[G]$ for all $u \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mu(K))$.

Conjecture (Brumer-Stark)

Set
$I_{K}^{T}:=\left\{\mathfrak{I} \in I_{K} \mid \mathfrak{I}^{\theta(0)}=(u), \exists \varepsilon: W u=\varepsilon\right.$ in $\mathbb{Q} K^{\times}, K\left(\varepsilon^{1 / W}\right) / K$ is abelian $\}$.

Why the plural?

Stark's conjectures are quite miraculous - particularly in the case where the order of vanishing of is 1 , where there are many striking consequences of Stark's main conjecture.

Suppose $S=T \cup\{\mathfrak{p}\}$ for \mathfrak{p} totally split in K. It is a fact that $u \theta_{T}(0) \in \mathbb{Z}[G]$ for all $u \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mu(K))$.

Conjecture (Brumer-Stark)

Set
$I_{K}^{T}:=\left\{\mathfrak{I} \in I_{K} \mid \mathfrak{I}^{\theta(0)}=(u), \exists \varepsilon: W u=\varepsilon\right.$ in $\mathbb{Q} K^{\times}, K\left(\varepsilon^{1 / W}\right) / K$ is abelian $\}$.
We have

$$
I_{K}^{T}=I_{K} .
$$

What next?

We demonstrate how the perspective of the eTNC can lead to refinements of the following weaker conjecture of Brumer:

What next?

We demonstrate how the perspective of the eTNC can lead to refinements of the following weaker conjecture of Brumer:

Conjecture (Brumer)
For each $u \in A n n_{\mathbb{Z}[G]}(\mu(K))$ and $S_{\infty} \subseteq T \subseteq S$,

$$
u \theta_{S}(0) \in A n n_{\mathbb{Z}[G]}\left(C l\left(\mathcal{O}_{T}\right)\right)
$$

What next?

We demonstrate how the perspective of the eTNC can lead to refinements of the following weaker conjecture of Brumer:

Conjecture (Brumer)
For each $u \in A n n_{\mathbb{Z}[G]}(\mu(K))$ and $S_{\infty} \subseteq T \subseteq S$,

$$
u \theta_{S}(0) \in A n n_{\mathbb{Z}[G]}\left(C l\left(\mathcal{O}_{T}\right)\right)
$$

It is reasonable to consider this weakening because the relation between Stark's conjecture and the ' ϵ ' in BS does not hold for higher orders of vanishing.

What next?

We demonstrate how the perspective of the eTNC can lead to refinements of the following weaker conjecture of Brumer:

Conjecture (Brumer)
For each $u \in A n n_{\mathbb{Z}[G]}(\mu(K))$ and $S_{\infty} \subseteq T \subseteq S$,

$$
u \theta_{S}(0) \in A n n_{\mathbb{Z}[G]}\left(C l\left(\mathcal{O}_{T}\right)\right)
$$

It is reasonable to consider this weakening because the relation between Stark's conjecture and the ' ϵ ' in BS does not hold for higher orders of vanishing.

Note that this is a very boring statement if $\theta_{S}(0)=0$. Let's try and generalise this for when $\theta_{S}(0)$ vanishes to higher powers.

What next?

Recall: for $f: \mathbb{Q} U_{S} \xrightarrow{\sim} \mathbb{Q} X_{S}$, Stark's conjecture says

$$
\theta_{S}^{*}(0) R(f)^{-1} \in \mathbb{Q}[G] .
$$

What next?

Recall: for $f: \mathbb{Q} U_{S} \xrightarrow{\sim} \mathbb{Q} X_{S}$, Stark's conjecture says

$$
\theta_{S}^{*}(0) R(f)^{-1} \in \mathbb{Q}[G] .
$$

Suppose $\theta_{S}(0)$ vanishes to order r and write $\theta_{S}^{(r)}(s)=\theta_{S}(s) / s^{r}$. It is natural to ask:

What next?

Recall: for $f: \mathbb{Q} U_{S} \xrightarrow{\sim} \mathbb{Q} X_{S}$, Stark's conjecture says

$$
\theta_{S}^{*}(0) R(f)^{-1} \in \mathbb{Q}[G]
$$

Suppose $\theta_{S}(0)$ vanishes to order r and write $\theta_{S}^{(r)}(s)=\theta_{S}(s) / s^{r}$. It is natural to ask:

Question (Burns)

For each $x \in A n n_{\mathbb{Z}[G]}(\mu(K))$ and $f \in \operatorname{Hom}_{G}\left(U_{S}, X_{S}\right)$, is it the case that

$$
x \theta_{S}^{(r)}(0) \cdot R(f)^{-1} \in A n n_{\mathbb{Z}[G]}\left(C l\left(\mathcal{O}_{S}\right)\right) ?
$$

What next?

Recall: for $f: \mathbb{Q} U_{S} \xrightarrow{\sim} \mathbb{Q} X_{S}$, Stark's conjecture says

$$
\theta_{S}^{*}(0) R(f)^{-1} \in \mathbb{Q}[G]
$$

Suppose $\theta_{S}(0)$ vanishes to order r and write $\theta_{S}^{(r)}(s)=\theta_{S}(s) / s^{r}$. It is natural to ask:

Question (Burns)

For each $x \in A n n_{\mathbb{Z}[G]}(\mu(K))$ and $f \in \operatorname{Hom}_{G}\left(U_{S}, X_{S}\right)$, is it the case that

$$
x \theta_{S}^{(r)}(0) \cdot R(f)^{-1} \in A n n_{\mathbb{Z}[G]}\left(C /\left(\mathcal{O}_{S}\right)\right) ?
$$

This is not a consequence of (our case of) the eTNC!

What next?

Recall: for $f: \mathbb{Q} U_{S} \xrightarrow{\sim} \mathbb{Q} X_{S}$, Stark's conjecture says

$$
\theta_{S}^{*}(0) R(f)^{-1} \in \mathbb{Q}[G] .
$$

Suppose $\theta_{S}(0)$ vanishes to order r and write $\theta_{S}^{(r)}(s)=\theta_{S}(s) / s^{r}$. It is natural to ask:

Question (Burns)

For each $x \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mu(K))$ and $f \in \operatorname{Hom}_{G}\left(U_{S}, X_{S}\right)$, is it the case that

$$
x \theta_{S}^{(r)}(0) \cdot R(f)^{-1} \in A n n_{\mathbb{Z}[G]}\left(C l\left(\mathcal{O}_{S}\right)\right) ?
$$

This is not a consequence of (our case of) the eTNC!
Macias Castillo showed that the answer is in the affirmative for K / k a quadratic extension, amongst some other progress.

Closing remarks

- Kakde \& Dasgupta recently (almost) proved Brumer-Stark.

Closing remarks

- Kakde \& Dasgupta recently (almost) proved Brumer-Stark.
- With some effort, can make this non-abelian. In that setting, Burns \& Kakde have made recent progress over function fields.

Closing remarks

- Kakde \& Dasgupta recently (almost) proved Brumer-Stark.
- With some effort, can make this non-abelian. In that setting, Burns \& Kakde have made recent progress over function fields.
- I lied to you.

Closing remarks

- Kakde \& Dasgupta recently (almost) proved Brumer-Stark.
- With some effort, can make this non-abelian. In that setting, Burns \& Kakde have made recent progress over function fields.
- I lied to you. Need a less naïve definition of determinant modules - with this construction some diagrams which we would like to be commutative only are so 'up to sign'.

Closing remarks

- Kakde \& Dasgupta recently (almost) proved Brumer-Stark.
- With some effort, can make this non-abelian. In that setting, Burns \& Kakde have made recent progress over function fields.
- I lied to you. Need a less naïve definition of determinant modules - with this construction some diagrams which we would like to be commutative only are so 'up to sign'.
- The difficulty in verifying our case of the eTNC comes from computing the 2-extension τ_{s}.

Closing remarks

- Kakde \& Dasgupta recently (almost) proved Brumer-Stark.
- With some effort, can make this non-abelian. In that setting, Burns \& Kakde have made recent progress over function fields.
- I lied to you. Need a less naïve definition of determinant modules - with this construction some diagrams which we would like to be commutative only are so 'up to sign'.
- The difficulty in verifying our case of the eTNC comes from computing the 2-extension τ_{s}.
- To state the full eTNC, replace 2-extensions τ_{S} by 'perfect complexes' over $\mathbb{Z}_{p}[G]$ for each prime p.

Closing remarks

- Kakde \& Dasgupta recently (almost) proved Brumer-Stark.
- With some effort, can make this non-abelian. In that setting, Burns \& Kakde have made recent progress over function fields.
- I lied to you. Need a less naïve definition of determinant modules - with this construction some diagrams which we would like to be commutative only are so 'up to sign'.
- The difficulty in verifying our case of the eTNC comes from computing the 2-extension τ_{s}.
- To state the full eTNC, replace 2-extensions τ_{S} by 'perfect complexes' over $\mathbb{Z}_{p}[G]$ for each prime p. This is hard!

